Automatic Color Scheme Adjustment for Different Color Vision

Takuto Yanagida and Hidenori Mimura Research Institute of Electronics, Shizuoka University

Which is the theater?

Which is the theater?

Color vision

- Cone cells on retinas in eyes
 - L types for long wavelength
 - M types for medium wavelength
 - **S** types for short wavelength

Color vision deficiency

- Dichromacy
 - Protanopia (protanomaly)

Deuteranopia (deuteranomaly)

• Tritanopia (tritanomaly)

[†] Protanomaly, deuteranomaly, and tritanomaly are color vision deficiencies caused by mutated cone cells, and in this work, they are included in protanopia, deuteranopia, and tritanopia respectively.

Color vision deficiency

- Dichromacy
 - Protanopia (protanomaly)
 - Deuteranopia (deuteranomaly)

More than 5% of Japanese

• Tritanopia (tritanomaly)

Purpose of this work

- Developing a tool for adjustment of color scheme:
 - To enlarge color differences in different color visions
 - Trichromacy (type 3)
 - Protanopia (type P)
 - Deuteranopia (type **D**)
 - To maintain the original color scheme as possible

For 'color universal design' and 'art design'

How to handle the problem?

- A color is a combination of parameters, brightness, chroma, and hue
- A color scheme is a combination of colors

- How to find a color combination
 - which are different enough,
 - while maintaining the original colors?

Applied technology

- Fuzzy constraint satisfaction problem (FCSP)
 - A field of artificial intelligence
 - A framework of combination search problems of assignments that almost satisfy constraints among variables
 - General-purpose solvers are proposed

† Ruttkay, Z.: Fuzzy Constraint Satisfaction, Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Vol. 2, USA, pp. 1263–1268 (1994).

Fuzzy constraint satisfaction problem (1)

- Variables
 - $X = x_1, ..., x_n$ Expressing **solution** by assigned values
- Domains
 - $D = D_1, ..., D_n$ Sets of values possible to be assigned
- Constraints
 - $C = c_1, ..., c_r$ Rules of possible combinations of values
 - with satisfaction degrees (desirability of combinations)

Fuzzy constraint satisfaction problem (2)

- Solutions
 - Assignments of all variables
 - with satisfaction degrees (0, 1]
 - The minimum of all satisfaction degrees:
 - $C_{\min}(v) = \min(\mu R_h(v[S_h]))$
 - Assignment v is a solution when $C_{\min}(v) > 0$

Formulation

- Color (variable)
 - A color selected from a palette
- Palette (domain)
 - A set of neighbor colors and the original color
 - The range of neighborhood is defined by conspicuity
- Relation of colors (constraint)
 - Color difference in each color vision
 - Expressing desirability as satisfaction degrees

Domain

- Colors on concentric spheres In CIE 1976 L*a*b* color space
 - The center is the original color
 - Their radii increase by Δr
 - Higher conspicuity makes smaller Δr

Constraint

- Difference (*c*_d)
 - Distance between 2 colors assigned to 2 variables
 - Larger distance makes higher satisfaction degree
- Maintenance (c_m)
 - Distance between assigned color and the original color
 - Smaller distance makes higher satisfaction degree

Mapping color difference to satisfaction degree [0, 1]

Fuzzy relations

A larger distance makes a higher satisfaction degree.

A smaller distance makes a higher satisfaction degree.

Example

To improve the 3-tone color scheme

Representation as FCSP

Constraint c (relation)

Formulated color scheme problems

- Color scheme problem
 - Variables (colors)
 - Domain (palette)
 - Constraints

Implementation (View window)

Color differences in each color vision

Implementation (Controller window)

Example of behavior (1)

Example of behavior (2)

Type P

Type D

Discussion

- Can I actually get a solution?
 - Yes. By suppressing palette sizes, a solution is derived in a few seconds.
- Is the solution appropriate?
 - Yes, because the method is based on knowledges of psychophysics.
 - However, we need to perform experiments with subjects

Conclusion

- Formulation of color scheme problem as fuzzy constraint satisfaction problem (FCSP)
 - To enlarge differences of colors in different color visions
 - To maintain the original color scheme as possible
- Developing a prototype tool for adjustment of color scheme

For 'color universal design' and 'art design'

Future work

- To apply various knowledge of psychophysics
 - Newer simulation of color visions
 - Visual perception of elderly people
 - Categorical perception of colors
- To Implement a tool and evaluate it

Fusion of the fields of psychophysics and artificial intelligence

Automatic Color Scheme Adjustment for Different Color Vision

Website:

http://www.nvrc.rie.shizuoka.ac.jp/takty/

Takuto Yanagida and Hidenori Mimura

Research Institute of Electronics, Shizuoka University