
User Interface Architecture with
Abstract Interaction Description

Takuto YANAGIDA

Laboratory of Intelligent Information Systems

Research Group of Mathematical Information Science

Division of Computer Science

Graduate School of Information Science and Technology

Hokkaido University

Sapporo, Japan

Doctoral Dissertation

submitted to Graduate School of Information Science and Technology,

Hokkaido University

Contents

1 General Introduction 1
1.1 User Interfaces . 1

1.1.1 What are user interfaces? 1
1.1.2 Reason of various UIs 2

1.2 General Objectives . 4
1.2.1 Objectives . 4
1.2.2 Image and contribution 4

2 Interface Client/Logic Server 7
2.1 Introduction . 7

2.1.1 Background . 7
2.1.2 Objective . 8
2.1.3 Related work . 9

2.2 Logical Description Language 13
2.2.1 Outline . 13
2.2.2 Interaction model . 14
2.2.3 Semantic web . 15
2.2.4 Description . 16

2.3 Interface Client/Logic Server . 20
2.3.1 Clients and servers . 20
2.3.2 Protocol . 24
2.3.3 Interpretation of UI meanings 25

2.4 Implementations . 26
2.4.1 Framework . 26
2.4.2 Clients and servers . 27

2.5 Discussion . 31
2.5.1 Design . 31
2.5.2 Interpretation of meanings 31
2.5.3 Feasibility . 32

2.6 Conclusion and Future Work . 32
2.6.1 Conclusion . 32
2.6.2 Future work . 34

i

3 Flexible Widget Layout 35
3.1 Introduction . 35

3.1.1 Background . 35
3.1.2 Objective . 36
3.1.3 Related work . 37

3.2 Layout Problem . 39
3.2.1 Outline . 39
3.2.2 Used widgets . 41
3.2.3 Structure . 42

3.3 Formulation . 45
3.3.1 Fuzzy constraint satisfaction 45
3.3.2 Flexible widget layout with FCSP 46

3.4 Method of Layout . 52
3.4.1 Three phases . 52
3.4.2 Optimization . 54
3.4.3 Implementation . 54

3.5 Discussion . 56
3.5.1 Speed of layout . 56
3.5.2 Validity of formulation 58
3.5.3 Other considerations . 58

3.6 Conclusion and Future Work . 61
3.6.1 Conclusion . 61
3.6.2 Future work . 62

4 General Conclusion 65
4.1 Conclusion . 65
4.2 Future Work . 66

A Definition and Examples of the AIDL 69
A.1 Definition of the AIDL with RELAX NG 69
A.2 Examples of the AIDL . 75

B Summary of the ICLS library 79
B.1 Package aidl . 79
B.2 Package core . 80
B.3 Package net . 81
B.4 Package util . 82

Acknowledgements 83

Bibliography 85

ii

List of Figures

1.1 Three layers of a user interface as seen as a system 2
1.2 Relationship between interaction and UI 3

2.1 Interface client/logic server (ICLS) architecture 10
2.2 Concept of UI migration on the ICLS architecture 10
2.3 Example of web applications . 12
2.4 Examples of look and feel theme of the Swing toolkit 12
2.5 Example of skin function of a media player application 13
2.6 Selection act model expressed in an AIDL document 15
2.7 Example of a RDF statement . 16
2.8 Example of meaning hierarchy and corresponding service-specific

UI elements . 19
2.9 Process flow of communication between an interface client and a

logic server . 22
2.10 Process flow of a migration from the client 1 to the client 2 23
2.11 Example of messages used in the tree structure synchronization

protocol . 24
2.12 Sharing a session using the session ID 25
2.13 Results of UI generation in each client 26
2.14 Screenshots of the GUI interface client 28
2.15 Other screenshots of the GUI interface client 29
2.16 Screenshot of the voice output client connecting to the desk lamp

control server and the flow of its use 30
2.17 Averages of response time according to the number of clients . . . 33

3.1 Concept of (normal) widget layout 36
3.2 Concept of flexible widget layout 37
3.3 Selection act model expressed in AIDL documents 41
3.4 Widgets used in this thesis . 43
3.5 Three group widgets for positioning child widgets of a group element 43
3.6 Two labeling widgets for positioning a child widget and its descrip-

tion . 43
3.7 Tree structure of widget candidate sets 44
3.8 Example of constraint graph . 47

iii

3.9 Example of assignments of constraint graph of fuzzy constraint
satisfaction problem . 47

3.10 Example of the binary constraints, their scopes, and the assignments 51
3.11 Three phases for flexible widget layout 53
3.12 Results of flexible widget layout 55
3.13 The relationship between the complexities of UI model, and the

average layout times and the average desirability 57
3.14 Relationship between the dialog box area, time and desirability of

the default example UI model . 59
3.15 Relationship between the dialog box area, time and desirability of

the example UI model added one widget 59
3.16 Relationship between the dialog box area, time and desirability of

the example UI model added two widget 60
3.17 Relationship between the dialog box area, time and desirability of

the example UI model added three widget 60
3.18 Relationship between the complexities of UI model and both of the

average layout times and the desirability with the dynamic variable
order . 61

4.1 Derivations of this study as future work 66

iv

List of Tables

2.1 Basic types and permissible constraints 18
2.2 Orderings of the child elements of a group 20

3.1 Tradeoff between usability and layout-ease of widgets 40
3.2 Selection widget candidates . 44
3.3 Minimum widget heights . 49
3.4 Samples ofα∗ . 57

v

vi

Chapter 1

General Introduction

The topic handled in this thesis relates to the field of human computer interaction,
and user interfaces (UIs), which are sometimes called human interfaces. There are
many studies about this topic; they are roughly separated into three types:

• developments of actual UIs such as new devices and new applications,

• evaluations or developments of evaluation methods for existing or newly in-
troduced UIs, and

• offers of new kinds of frameworks, architectures, and concepts for UIs,

The study mentioned in this thesis mainly belongs to the third type, and its part be-
longs to the first one. In this chapter, I introduce the terms and their definitions used
in the field of HCI, explain the objective of this thesis, and mention the structure of
the following chapters of this thesis.

1.1 User Interfaces

1.1.1 What are user interfaces?

The term,user interfaceis widely used; what is its definition? User interfaces are
the point of contact between human and systems [1], and they themselves behave
as systems because some entities are contained there, which are interdependent
with each other. Services, especially intermediated by computers in this thesis, are
usually seen as systems which perform some functions based on the interaction
between the systems and their users. For the users, because the all the user can
see is UIs when they utilize the services, the UIs determine the all of look and feel
of services. In this thesis, a UI is considered as a system consists of three layers:
device, style, and service semantics (Figure 1.1).

Device corresponds to both hardware such as mouse, keyboard, and display of
PCs; and driver software for controlling them.

1

Figure 1.1: Three layers of a user interface as seen as a system. A user interface
consists of the three layers of the concepts: device, style, and service
semantics from physical one to logical one.

Style corresponds to CLI (command line interface), CUI (character-based user
interface or character user interface), GUI (graphical user interface), voice
input/output UI, etc.

Service semanticscorrespond to rules how to relate user operations to service
functions of each service.

In comparison with the each layer, the device layer is the most physical, the style
layer is more logical than it, and the service semantics layer is the most logical.

Along with the term UI, the term,interactionshould be defined for the purpose
of explanation of the difference between the two terms. Interaction is the commu-
nications between user and computers with verbal or nonverbal means [2]. Simple
communications and complex ones which are combinations of them are expressed
as interactions. On the other hand, UIs are defined as the medium of interactions.
That is, there exist UIs as implementations corresponding to each interaction, and
UIs are media for representing interactions. Therefore, descriptions of interaction
represent the communication of users and services more essentially than the de-
scription of UI. This definition is important at the point that it shows there is a
one-to-many relationship of interaction and UI (Figure 1.2). That reflects it is en-
able to construct various UIs from one interaction, and different interactions can
correspond to the same UI. Hence, it is difficult to specify interaction from only
the description of UIs. In this thesis, I try to generate UIs from descriptions of
interactions, and thus, various UIs can be constructed.

1.1.2 Reason of various UIs

There is a simple question about UIs; is there any almighty UI for every person,
every service, and every situation? There exist various UIs instead of an almighty
one; this might be an answer of the question although I did not study this topic.
Generally, various UIs are developed for the following three types of targets:

• specific purposes or services,

• specific contexts or situations, or

2

Figure 1.2: Relationship between interaction and UI. The both are in the one-to-
many relations, and thus, one interaction can correspond to multiple
UIs. In addition, different interactions can correspond to the same UI.

• specific users (who have specific characters).

As mentioned above, just on PCs, GUI and CLI are used according to the purpose
done in the UI, and they are the example of UIsfor specific purposes or services.
To widen the range of services, vending machines of rail way tickets, drinks, etc.
are also the examples of the UIs for specific services. They usually have control
panels with buttons for selecting merchandises and levers for getting them, and
those UIs are specific for the services offered by the machines. On the other hand,
the users’ contexts effect to the decision of used UIs. The frequently used word,
mobile is used for expressing the context that users are out of offices and put on
some devices. For the mobile context, mobile phones, mobile PCs, and PDAs are
used, and they are the examples of the UIsfor specific contexts or situations. The
context is not limited to the mobile, for example, at least, the darkness in a theater
or when a blackout is a kind of the context, and for this context, appropriate UIs
might exist. Furthermore, there exist some UIsfor specific users. UIs for people
with disabilities are the example of those UIs, and in other words, many UIs are
developed for people without disabilities. The UIs based on the concept of the
universal design are developedfor all users. Therefore, to finding the mighty UI
for all services and all contexts are waste of labor.

There is a relation between various UIs for different targets mentioned above
andcontext-aware services. Recently, the concept of context-aware services has
been attracting attention as an approach to improving the usability of computer-
mediated services [3, 4]. Especially in ubiquitous computing environments [5],
context-aware services are expected to become more effective and beneficial. They
enable users to utilize dynamically-composed and suitable service provided ac-
cording to the users’ contexts in ubiquitous computing environments. It is a role of
context-aware services to determine automatically suitable ones from various UIs,
which are categorized into the three types of targets. Therefore, there is a challenge
of how to determine suitable UIs, which is a part of the research of context-aware
services. In this thesis, it is not handled though related to the theme of the thesis.

3

1.2 General Objectives

1.2.1 Objectives

The objective of this study is offeringuser-preferred UIs; for that, I implement a
new UI architecture, and develop a method of generating UIs based on the archi-
tecture. Then, I attempt to improve the traditional environment of UIs of services,
and to make the environment of user-preferred UIs. In this thesis, the term user-
preferred UIs is used for the following two meanings:

• an architecture that enables users to utilize services with their preferred UIs;

• UIs themselves that correspond to users’ preferences for UIs.

The first meaning is addressed as the first topic of this thesis how to realize the
situation where users can utilize their preference UIs for accessing any services.
In addition, the second meaning is addressed as the second topic; I also develop
an example of the user-preferred UIs. For strictly realizing the user-preferred UIs
as an environment, I need to develop various UIs as studies, but, in this thesis, I
confine them to one implementation and make others future studies.

This work consists of two elements and each one corresponds to Chapter 2 and
3 respectively. The first is to offer a new UI architecture, which realizes both flex-
ible exchange of UIs of services, and flexible customizing. The second is to show
an actual example of UIs based on the UI architecture, which offers a user preferred
GUI. In the following paragraphs, I explain both how the work will contribute for
users and service developers, and the image in the future of the work.

1.2.2 Image and contribution

For users, the work brings new service environment. Users themselves can be to
change and to use UIs of the various services that use computers as the point of
contact. Therefore, by that users choose and obtain UIs which matched with the
users’ taste for UIs, they can be to use the services conveniently. In addition, the
operability improves at the point to get possible to perform higher customization
after having changed it. Because the services pervade the everyday life of the
user deeply, by this study that can apply to the whole services, the convenience
can be improved in various situations in the life of the users. In addition, it is
a characteristic of the proposal architecture not to limit to GUIs. Therefore, in
consideration of various users’ characteristics such as use environments and the
taste for the interface, users can use UIs with devices and styles which match with
then. Furthermore, users can use all services comfortably even if they had some
kind of physical obstacles by obtaining a UI specific for it. At this time, in the
meaning of not assuming the possession of the disabilities to be a special situation,
it is important that becomes possible use by matching such a special UI to the
situation even if the user does not have the disabilities.

4

For service developers, this work not only reduces the costs of service devel-
opments, but also improves the usability of the services. So far, developers had to
make the program that did specific UI processing at each service, coding on each
platform of service was needed. However, because it only has to describe abstract
processing alone that doesn’t depend on a specific interface by using the frame-
work that this work offers, the decrease of the development cost can be attempted.
Moreover, it decreases for service developers to consider for the improvement of
usability, since it enables the user to change of the UIs.

For UI developers, this work increases the diversity of UIs that can be offered.
The UIs are separated from services by the proposal architecture, and they come to
cooperate with abstract descriptions. As a result, correspondence and the depend-
ing processing to individual services become unnecessary. Therefore, the possibil-
ity of achievement of more reformative UIs arises in the UI developments. More-
over, that the UIs can exist independently from services brings that it is possible to
sales and to circulate only the UIs. Therefore, it comes to be able to circulate to
the market even if it is a special UI, and it comes to be selected by the users.

In this thesis, in future, I assume the situation that the user in the scenario
can freely choose the equipment for the system and he or she can buy it in shops.
This is similar to the present relation to the mobile phones and the service that can
be used by them. To receive the service of the same voice call etc., the user of
the mobile phone can freely choose the portable terminal that each manufacturer
except to the career offers based on convenience. The application of the proposal
architecture as this infrastructure enables the service supplier and the UI supplier
to exist independently. And, the environment that the user is freely combined each
service and the UI and can used will be achieved.

This thesis consists of four chapters. In Chapter 1, as general introduction, I
mentioned the terms used in this thesis and general objectives. Next, in Chapter 2,
I explain a new UI architecture for the objectives, and in Chapter 3, I explain an
implement of GUI of the architecture for user-preferred UI. Finally, I mention the
general conclusion in the last chapter.

5

6

Chapter 2

Interface Client/Logic Server

In this chapter, a UI architecture named the interface client/logic server (ICLS)
is proposed, which supports migratory user interfaces (UIs) and adaptive UIs for
devices and services. As mentioned in the previous chapter, for realizing user-
preferred UIs, it is needed to develop both an architecture that enables users to
utilize services through preferred UIs, and UIs that correspond to users’ prefer-
ences for UIs. The proposed architecture is architecture for the user-preferred UIs,
and targets dialog-based interactive services like web applications, where some in-
put facilities are used on some dialogs or pages updated as state transitions. In
this chapter, the user-preferred UIs are separated to the following two users’ de-
mands. The first demand is to be able to use services through different devices and
modalities and in accordance with certain contexts. Another demand is to be able
to change devices and take their tasks from one device to another This is called
migratory UIs. The ICLS is designed for adaptive and migratory UIs In the follow-
ing sections, the detail of the ICLS is presented, and some implementations of the
architecture are shown. After that, some issues about the ICLS are discusses.

2.1 Introduction

2.1.1 Background

Constant improvements in technology have spawned a large variety of platforms
(such as mobile phones, PDAs, portable music players, and PCs) used for inter-
active services, and that has created users’ new demands on user interfaces (UIs)
of the services. The first demand is to be able to use a service through different
devices with different modalities and in accordance with certain contexts. For ex-
ample, depending on whether users are in their homes or cars, devices they want
to use for checking their schedules will be different. I consider that UIs offered by
devices should be device- and service-specific ones for the richness of usability,
and I call themadaptive user interfaces. Another demand is to be able to change
devices and take tasks from one device to another, which are also with different

7

modalities. This is calledmigratory user interfaces[6]. When the users change
their devices, they should not be obliged to repeat the same processes which have
already been completed with the previous device.

Conventional ways of associating devices and services do not meet the users’
demands because of costs and inadequate separation between services and devices.
Simply developing multiple versions for each platform respectively is expensive for
developers in terms of time and money, and it needs to spend labors for maintaining
the versions consistency. Hence, in spite of the diversity of devices and platforms,
users cannot utilize them effectively when accessing the services. Recently, web
browsers have been implemented in many mobile devices, and the advent of web
applications for these devices seems to have solved the problem. They need, how-
ever, specific versions in order to offer device-specific UIs for each platform, be-
cause web architectures including HTML still assume their target platform. Thus,
they are often accessed selectively with different URIs. The conventional ways are
discussed in detail in Section 2.1.3.2.

2.1.2 Objective

In this chapter, the following scenario is considered for explaining the concept of
the proposal:A man is staying in the Tapioca Hotel in a resort, and he is now in
his room feeling a little bit hungry because it is six p.m. the time for dinner. He
searches a menu of room service, but, instead of it, he finds there is a sign, which
indicates that guests can access room service there. Thus, he uses his own gadget
like mobile phone to access the room service. Through this service on the gadget,
he can see the menu for dinner and he understands he can order dishes there, but
he cannot see the detail of the dishes because of the spec. of his gadget. He looks
around the room, and finds the same sign on a sophisticated TV there. He pushes
a button on the gadgets toward the TV; therefore, the TV is turned on and shows
the pictures of the detail of the dish he wants to order. By watching the TV, he
can order his dinner operating his gadget.To realize this scenario, the service can
be accessed through different devices (the gadget and the TV) and can be moved
between such devices continuing the use of the service.

In this thesis, a UI architecture named theinterface client/logic server(ICLS)
[7,8] is presented, which supports both migratory UIs and its extension; and offers
adaptive UIs (Figure 2.1). The ICLS is one of model-based UI architectures [9,10],
and leverageslogical descriptionsof UIs along with the other architectures. Its tar-
get is dialog-based interactive services like web applications, where some input
facilities (such as buttons, check boxes, and text fields) are used on some dialog
boxes or web pages updated as state transitions. In the ICLS,interface clientspos-
sessed by users are connected tologic servers, and the clients dynamically gener-
ate device-specific (client-specific) UIs from logical descriptions. The ICLS offers
migratory UIs between the clients, which is movements and continuations of tasks
between them (Figure 2.2). In addition, it offerssimultaneous UIsas an extension
of migratory UIs, where users can utilize multiple devices simultaneously. In the

8

context of the scenario, the gadget and the TV are interface clients, and the service
used for ordering dinner is a logic server. It is an example of simultaneous UIs that
the man can order by watching the TV through operating the gadget.

For this UI architecture, a language for logical descriptions as an XML appli-
cation, theabstract interaction description language(AIDL) is developed, which
is designed for migratory and adaptive (device- and service-specific) UIs. The
logical descriptions written in the AIDL (AIDL documents) are highly abstracted
from specific devices and modalities. Therefore, devices (the interface clients) and
services (the logic servers) can be developed separately and independently. For
implementing migratory UIs, the AIDL is designed to retain the current state of
generated UIs in the AIDL documents as well. For implementing adaptive UIs,
especially for service-specific UIs, the AIDL is designed to enable developers to
declareUI meaningsin a machine-readable way. The meanings are the way to
convey concrete roles of UI elements on each service to the clients from service
developers. UIs are dynamically generated in client-side using the meanings, and
thus, adaptive, or device- and service-specific UIs can be offered.

2.1.3 Related work

In this section, related work is categorized into two, one is work presented as stud-
ies, and another is existing technologies already used.

2.1.3.1 Studies

As a general solution for adaptive UIs, a broad range of research has been pro-
posed, and almost all of it employs a model-based UI design [9, 10], which com-
monly utilizes logical descriptions. There are some studies that address static (on
development times) and dynamic (in run-times) generations of UIs, and others that
handle migratory UIs. To generate UIs from logical descriptions requires resolving
a mapping between abstracted expressions and concrete UI elements. However, it
is difficult for the techniques to represent service-specific UIs because the map-
pings are simple projections between typed variables and UI elements, especially
GUI widgets, there. The proposal approach differs from existing work in terms of
the representation of UI meanings in the AIDL.

A web migratory interface system was proposed in [6,11]. It targets at arbitrary
web applications and performs reverse engineering of web pages of the applications
in order to obtain their logical information. This approach has the benefit of being
able to handle existing web applications, but it does not suit for adaptive UIs. For
example, which is the function of an HTML element<button> in a web applica-
tion, anavigatoror aselection? It is often used as one of the both functions, and
which one it is used as is not understandable by an HTML document itself. There-
fore, it is difficult to obtain information enough to represent an HTML element by
other UI elements corresponding to its function.

The ubiquitous interactor (UBI) [12–14] addresses service-specific domains

9

Figure 2.1: Interface client/logic server (ICLS) architecture. In the ICLS, interface
clients generate and offer UIs to their users, and logic servers execute
service contents. Servers and clients are connected with the tree struc-
ture synchronization protocol. Among the clients, the generated user
interfaces are migrated from one to another.

Figure 2.2: Concept of UI migration on the ICLS architecture. Services provided
by the logic servers are moved between the interface clients, keeping
the tasks on the service while the session of the service is continued.

10

with customization formsin logical descriptions for developing services indepen-
dent of any devices. It is similar to the ICLS architecture in the point that it can
represent various UIs for services using interaction acts as the elements of UI func-
tion. However, the UBI handles service-specific UIs in a different way that it uses
specialized customization forms for each device for controlling presentations of
UIs on specific devices. Since the customization forms have no portability among
different devices, developers need to customize their descriptions for each device.
Moreover, it does not address the UI migration.

The personal universal controller (PUC) [15–17] was proposed for remote con-
trolling various appliances with only PDAs. The PUC uses a mechanismsmart
templatesfor generating conventional presentations on some service domains. I
think this mechanism is beneficial for generating service-specific UIs and similar
to the meaning approach of the AIDL, but the difficulty of defining the smart tem-
plates is not mentioned. In addition, there is no consideration of migration there
because the system targets at single sort of devices, PDAs.

User interface markup language (UIML) [18] is an XML-based language for
developers to describe UIs independently of specific platforms. During the devel-
opment period, developers need to define relationships between elements in UIML
and other UI elements in an existing language such as Java or HTML. It is similar
to the AIDL in terms of XML-based UI languages, but it does not support dynamic
UI generation and UI migration in run-time.

As for other related work, I can also mention the migratory applications [19],
the XWeb [20], the document-based framework [21], and the ICrafter [22]. Mi-
gratory applications offer a programming model for migration with distributed
scripting language, Obliq, but this system is strongly dependent on the scripting
language. Other studies have some similarities regarding the use of XML and
adoption of a model-based approach, but it does not address UI migration.

2.1.3.2 Existing technologies

Recently, web applications have become widely accepted, and are expected as a
new type of applications in comparison with legacy applications which need to be
installed locally on PCs (Figure 2.3). In the web environment, many technologies
such as Flash, JavaScript, XML, and CSS have been introduced, and they are used
for enriching the web applications. Especially, the success of Ajax (the acronym for
asynchronous JavaScript and XML) come to be recognized, accompanied by some
practical examples like Gmail, a web mail service [23]. These web applications are
sometimes mistakenly believed as the solution for the users’ demands mentioned
above, because they are accessible by web browsers on many devices. However, in
fact, they need to be customized for each device, because the web technologies are
not developed with the intention to be such an application platform. For example,
Gmail is offered by four versions such as Ajax version, normal HTML version,
mobile phone version, and a version for both iPod touch (a PDA-like portable
music player) and iPhone (a smart phone).

11

Figure 2.3: Example of web applications. It is a screenshot of Gmail, the web mail
service provided Google. This service is developed with Ajax, and
used by web browsers on PCs, PDAs, mobile phones, etc.

Figure 2.4: Examples of look and feel theme of the Swing toolkit. They are screen-
shots of the same dialog boxes made of Swing with different look and
feel themes. The left is with Metal (Steel), the center is with Metal
(Ocean), and the right is with Nimbus.

12

Figure 2.5: Example of skin function of a media player application. They are
screenshots of Winamp, a popular media player application. The left
is its default skin (http://www.winamp.com/player/overview),
and the right is one of its skins (http://www.winamp.com/skins/
details/149846). The skin function enables to change UIs but it
limited in each application.

There are other related technologies mistakenly thought as to be the solution.
The look and feel of Swing toolkit in Java language or the theme of window man-
agers used in X window system is widely supported function for customize UIs
(Figure 2.4). Needless to say, it is limited to GUI, and it targets literally the look
and feel of GUI. As another similar technology, the skin function of applications
especially media players can be mentioned here (Figure 2.5). The skins are used
for customizing UIs more dynamically than the look and feel, but it limited to
specific applications, and it is not shared among applications. In this way, these
customizable UIs do not mean the adaptive UIs.

This chapter consists of six sections. In the first section, as introduction of
this chapter about the UIs, the background, objective and related work were men-
tioned. In the following Section 2, the outline of the logical description language
is mentioned, and how to describe interactions is explained. In Section 3, the out-
line of the architecture ICLS is explained, followed by the protocol between the
clients and servers. In Section 4, implementations of framework of the ICLS and
some clients and servers are shown. In the following Section 5, some consideration
about the design of the architecture, the interpretation of meaning, and the feasi-
bility of the ICLS are discussed. Lastly, in Section 6, conclusion and some issues
remained as future work are mentioned.

2.2 Logical Description Language

2.2.1 Outline

In the ICLS, XML documents written in the AIDL are used as logical descriptions
for describing UI functions for each services (Appendix A.2). The AIDL has been

13

defined with a schema written in RELAX NG [24] (for the detail, see Appendix
A.1). For describing UI functions in a general way, I have developed an interaction
(UI functions) model between users and services, theselection act model. The
AIDL is designed to specify UI information of services enough to realize migratory
and adaptive (device- and service-specific) UIs.

In this section, one of the semantic web technologies, the resource description
framework (RDF) [25] is introduced for adding the function of expressing mean-
ings of UI functions of specific services into logical descriptions. The easiest way
to address multi-devices and multi-platforms is by limiting, abstracting, and ag-
gregating the functionalities of devices and platforms. This approach is adopted in
many existing studies in common, and its details were provided in Section 2.1.3.
Here, the same approach is also adopted; however, with the expression of UI mean-
ings in services, the proposal system has an advantage of offering the possibility
for combining service-specific and device-specific functionalities. In the AIDL,
RDF classes are exploited for expressing UI meanings, and hierarchies of these
classes are utilized for the inference of the meanings. RDF is a standardized web
technology, independent of specific platforms and venders, and it is designed for
addressingopened information, which is information not expected in advance. The
AIDL inherits these RDF characteristics.

2.2.2 Interaction model

In the selection act model, UI functions are represented asselection actswith some
parameters, and they are grouped to make a tree graph. The model consists of some
selection acts (or elements), group elements, and their description elements. A se-
lection element represents an essential function of UI elements that are in common
among devices and modalities. Group elements make groupings of relevant se-
lection elements and group elements as child elements (Figure 2.6). In addition,
selection elements and the group elements can have description elements for their
explanations and a flag expressing whether the elements are enabled or not.

A set of UI elements in the model is expressed asU = US ∪ UG ∪ UD, where
US is a set of selection elements,UG is a set of group elements, andUD is a set of
description elements. Selection elementui ∈ US is represented as a 5-tuple:

ui = 〈Li ,ei , ti , oi ,mi〉, (2.1)

and its current state. In the tuple,Li stands for the typed list of choices, and|Li |
stands for the number of choices.ei ∈ {single, multiple} is the selection size,
ti ∈ [1, 10] is the importance,oi ∈ {true, false} denotes the flag meaning whether
its choices are opposite when they have two choices, andmi denotes meaning (a
purpose in a service). For instance, a selection element representing the operation
of the power state of a desk lamp is as follows:u1 = 〈L1 = {ON, OFF}, e1 = single,
t1 = 1, o1 = true, m1 = LampPowerState〉, and current state isON. Note that the
selection elements are not mere typed variables, because the elements contain those
parameters which are specific for generated UIs based on them.

14

Figure 2.6: Selection act model expressed in an AIDL document. A group ele-
ment makes both parental relationship between itself and its child ele-
ments; and sibling relationship among them. All selection elements are
grouped as a tree structure recursively. The root of the tree corresponds
to a group.

2.2.3 Semantic web

As mentioned above, it is efficient to handle the meanings of interactions for de-
scribing interactions, but it is difficult to enumerate beforehand all of the meanings
of selection elements in the real world. Therefore, the semantic web technologies
are introduced into the AIDL. The semantic web is a framework for constructing
machine-analyzable web by improving simple hyperlink structure in HTML and
adding semantics for the hyperlinks [26, 27]. In this section, the outline of the se-
mantic web and one of its components, the resource description framework (RDF)
are explained, and how to introduce them into the work is mentioned.

For handling semantics with extending traditional web, it is necessary to add
the function that the values indicating relationships can be appended to the concept
of hyperlinks, and these values should be machine-readable. Hence, the semantic
web is designd based on its design principle, which is not standardized officially,
but it has been organized as follows [27,28]:

Everything Identifiable is on the Semantic Web It must be able to handle not
only resources on networks but also physical resources such as peoples,
places, and event comprehensively with assigning URI (uniform resource
identifier) to each entity.

Partial Information It must enable everyone to mention everything in any wise
in a similar way of traditional web, which handles partial and opened infor-
mation of the real world, which can be known partially.

Web of Trust It must offer for each application the mechanism for evaluating how
veridical the information on the web is, but not to declare all of it is truth.

Evolution It must be able to enable both to effectively combine information of-
fered by distributed and independent communities, and to add new informa-
tion with keeping old information untouched.

15

Figure 2.7: Example of a RDF statement. A statement consists of a subject (the
oval), a property (the arrow), and a object (the rectangle). A subject
can have multiple properties, and if an object is a resource, the object
can have another property as a subject.

Minimalist Design It must take a course of keeping simplicity and to simplify
complex things as possible, and avoiding too much standardizing.

RDF is a data model for representing information about resource on the web,
and it allows adding values representing relationships, to links, which are the com-
ponents for constructing network structures of documents like HTML. It repre-
sents information as statements which consist of a subject, a property, and a object
(Figure 2.7), and the set of the statements is called a RDF graph. It handles sub-
jects, properties, and objects as resources, which are represented uniquely by URI.
Strings and values except resources are handled as literals. By using this naming
mechanism, RDF graphs made by different people can be merged without discrep-
ancy. In addition, RDF schema is standardized for defining RDF vocabularies,
which are both the values representing the relationships, and classes meaning the
type of resources. The class is the method for grouping resources that have rel-
evant characters, and moreover, the relationship of subclass can connect classes.
Resources belong to the class are called instances of the class.

2.2.4 Description

2.2.4.1 Design

The AIDL is newly developed from scratch for supporting the concept of the ICLS.
It is designed based on the following three principles:

Comprehensive description independent of specific UIsThe AIDL has to han-
dle various UIs in a unified way, and thus, descriptions in it cannot be depen-
dent on specific UIs. It describes interaction information common to every
UI, and abolishes other inherent information of specific UIs and media in-
formation, for which UIs have deferent capability.

High extendability for the real world The AIDL has to deal with choices and
meanings of selection elements in the real world. These cannot be defined
beforehand because they differ by services. By adopting RDF, it become
enable to define partial information in the real world according to need, and
thus, interactions of various services can be described.

16

Machine-readability enough for automatic UI generation The AIDL has to be
well-portable as a language, and has to contain information enough for au-
tomatic UI generation. Because RDF is a standard independent of specific
platforms, it can be usable on various devices, and its logicality can be ex-
ploited for automatic processes.

The selection acts, choices, current states, and groups can be seen as XML
nodes in an AIDL document. Each selection node has its own selection state node
as a child node, and thus, the current state of the tree graph is represented with
all of the state nodes. For interface clients, the nodes expressing the structure of
interactions are immutable (meaning they are not modified), and other nodes for
expressing the current states are mutable (meaning they are modifiable), while all
nodes are mutable for logic servers. Thus, the tree represents a current state of a
service interaction with the states of the selection acts.

2.2.4.2 Selection elements

As shown below, a selection element is expressed by<aidl:selection> and
</aidl:selection> tags, which hold child elements expressing a choice list, a
current state, and a description element:

1 <aidl:selection aidl:meaning="...">
2 <aidl:description ... />
3 <aidl:state> ... </aidl:state>
4 <aidl:resources> ... </aidl:resources>
5 </aidl:selection>

In the following three subsections, I explain the detail of the constituents of the
selection acts, typed lists of choices, current states, and meanings in turn.

Typed choice lists A type of choice lists is one of basic types (resources, nu-
meric, and strings), and they are expressed as following tags:<aidl:resources>,
<aidl:numeric>, and<aidl:strings>. Here, the resources mean a set of things
specified with unique URI on the concept of semantic web, and the numeric and
strings mean a set of literals (values and strings) of RDF. For expressing arbitrary
subsets of these basic types,subtypesare introduced. A subtype is constructed with
one of the basic types and one of constraints:enumerationandrange(Table 2.1).
The enumeration is used for enumerating all used choices, and the range is used
for specifying maximum and minimum values. In the above example of a desk
lamp, the selection element contains a<aidl:resources> added an enumeration
constraint which specifies its two choices{On, Off} as follows:

1 <aidl:resources aidl:opposite="true">
2 <aidl:choice aidl:uri="http://www.example.com/On">
3 <aidl:description aidl:caption="On"/>
4 </aidl:choice>
5 <aidl:choice aidl:uri="http://www.example.com/Off">

17

Table 2.1: Basic types and permissible constraints

Basic types Permissible constraints

Resources Enumeration
Numeric Enumeration, Range
Strings Enumeration

6 <aidl:description aidl:caption="Off"/>
7 </aidl:choice>
8 </aidl:resources>

In this example, the propertyaidl:opposite expresses parameteroi of the cor-
responding selection element. For another example, a volume control of audio
instrument is described as a selection element having a<aidl:numeric> added
the range constraint such as{0 ≤ n ≤ 10} as follows:

1 <aidl:numerics aidl:frequency="1" aidl:min="0" aidl:max="10"/>

Furthermore, for the input of contents without any limitation like to-do items of a
PIM service, a<aidl:strings> without any constraint is used since it is difficult
to enumerate choices and to specify its range.

Current states A current state represents what choice is selected, and it is
one of choices contained in a choice list and expressed by<aidl:state> and
</aidl:state> tags. It changes according to user’s selections, and thus, the cur-
rent states of all selection elements express the current state of interaction described
in an AIDL document. When the type of a selection element has an enumeration
or range constraint, its state satisfies this constraint. Otherwise, when the type has
no constraint, the state can be an arbitrary element in the type. In the desk lamp
example, the selection element has the choiceOn as its state, which means literally
that the state of the lamp is on, and expressed as follows:

1 <aidl:state>http://www.example.com/On</aidl:state>

This current state mechanism is designed for the UI migration, and it expresses
literary the state of UIs. The migration is explained in Section 3.

UI meanings A UI meaning is represented as the URI of an RDF class, and is
exploited to specify the purpose of selection elements and to relate them to service-
specific UI elements such as custom widgets on GUI, specific interaction meth-
ods, and physical facilities on devices. It is expressed in an AIDL document by
aidl:meaning property of<aidl:selection> tag as follows:

1 <aidl:selection aidl:meaning="http://www.example.com/
LampPowerState">

2 ...
3 </aidl:selection>

18

Figure 2.8: Example of meaning hierarchy and corresponding service-specific
UI elements. In the example,LampPowerState is a sub class of
PowerState, andPowerState is a sub class ofnonemeaning nothing
is specified. It represents that the selection element withPowerState
is substituted for the element withLampPowerState.

UI meanings can compose their general-specific relationship as a hierarchical
structure of RDF classes corresponding to the meanings (Figure 2.8). AIDL docu-
ments can include an RDF document which represents the meaning hierarchy. The
embedded RDF document can be seen surrounded by<aidl:knowledge> and
</aidl:knowledge> tags as follows (see also Appendix A.2):

1 <aidl:knowledge>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
3 <rdf:Description rdf:about="http://www.example.com/

LampPowerState">
4 <rdfs:subClassOf rdf:resource="http://www.example.com/

PowerState"/>
5 </rdf:Description>
6 </rdf:RDF>
7 </aidl:knowledge>

UI meanings are beneficial in order to increase the concreteness of the descriptions
of selection acts and to adapt generated UIs to services. Note that the meaning
hierarchy is independent of the relationship of the types and their subtypes. In the
desk lamp example, the meaningLampPowerState added in the selection element
represents that its purpose is the operation of the power state of lamps.

2.2.4.3 Other elements

A group element is expressed by<aidl:group> and</aidl:group> tags, which
has its child elements as the child elements of the tags, and can be specified the or-
dering of its child elements (Table 2.2). For example, a group having two selection
elements and one group element which are ordered is expressed as follows:

1 <aidl:group aidl:ordering="ordered">

19

2 <aidl:description ... />
3 <aidl:selection> ... </aidl:selection>
4 <aidl:selection> ... </aidl:selection>
5 <aidl:group> ... </aidl:group>
6 </aidl:group>

The propertyaidl:ordering specifies how child elements are ordered, and it is
used by the interface clients for aligning the elements. When a description ele-
ment is added as a child of the group element, the child represents the description
of the group. If a group element is the root of a UI model, it is expressed by
<aidl:dialog> and</aidl:dialog> tags, instead.

A description element is expressed by a<aidl:description/> tag, which
has some properties for holding its description contents. For example, a description
having a caption and an abbreviation of the caption is expressed as follows:

1 <aidl:description
2 aidl:caption="Power switch"
3 aidl:abbr="PS"
4 />

The tag can have the following four properties:aidl:caption, aidl:abbr,
aidl:message, andaidl:resource, which are all information about the par-
ent element of the tag. The first property expresses literary the caption of an el-
ement owning the tag, and the tag must have this property. Propertyaidl:abbr
expresses the abbreviation of the caption, and propertyaidl:message expresses
an additional explanation of the parent element. Propertyaidl:resource is the
URL of an outer resource used for describing the element owing the tag.

2.3 Interface Client/Logic Server

2.3.1 Clients and servers

The ICLS architecture is designed based on the client/server model, and consists
of interface clients and logic servers. The term interface clients stand for various
devices and platforms in which ICLS client applications are implemented. By the
applications, UIs are dynamically generated in the clients to be adapted to clients’

Table 2.2: Orderings of the child elements of a group

Orderings Explanations

none Not ordered.
ordered Arbitrarily ordered.
subject_predicate Ordered in a subject-predicate relation.
time_line Chronologically ordered.
writing_direction Ordered in a writing direction.

20

capabilities and service contents of connecting servers. On the other hand, the term
logic server stands for various services in which ICLS server applications are im-
plemented. Both applications for the clients and servers are assumed to conform
to the specification of the ICLS, the details of which are provided later. Once de-
vices or services are developed in accordance with the specification, no revisions
are required when a new service or device is introduced. Because UI processes are
depend on service contents provided by the processes, it is generally difficult to sep-
arate the whole of UI processing from service codes, although many architectures
and frameworks attempt it. Therefore, I separate only device- or modality-specific
UI processes and incorporate them into the interface clients.

In the ICLS, AIDL documents are not only used for descriptions of UI func-
tions, but also they are used for communication between clients and servers. After a
client generates a UI based on an (original) AIDL document received from a server,
the client and server keep the DOM (document object model) tree constructed from
the document. They update the DOM tree, and communicate messages, where the
changes of the tree are serialized as deference of the AIDL document. By this
synchronization process, clients and servers virtually share the same DOM tree
constructed from an original AIDL document. DOM trees from AIDL documents
also contain the current states of generated UIs. Therefore, receiving a DOM tree
which is being used by another client means receiving the whole information about
all of the UIs in a session. That enables clients to attach existing sessions for UI
migration by simply communicating an AIDL document.

Figure 2.9 shows the flow of a service session between an interface client and
a logic server, and Figure 2.10 shows the flow of a migration process between two
interface clients. During the time a user is accessing a service through one client
in a session, the user can also access the same service through another client in the
existing session. At that time, the DOM tree of the first client is transferred to the
second client, and the tree of these clients is synchronized and updated simultane-
ously. Then, a migration is performed when the first client is disconnected. When
a client establishes a connection in a session, the server issues a unique session ID
to the client. This ID is used when the user access the same session again.

By using the scenario (Section 2.1.2), a use case of the UI migration is shown
as follows: In the scenario of a room service,a man uses his own gadget like mo-
bile phone to access the room service.Here, this phone-like gadget is an interface
client, and the room service is provided as a logic server installed in the room.
Through this service on the gadget, he can see the menu for dinner and he under-
stands he can order dishes there, but he cannot see the detail of the dishes because
of the spec. of his gadget.He uses the client for accessing the room service, and
the client is not enough for his purpose.He looks around the room, and finds the
same sign on a sophisticated TV there.This TV is also an interface client in this
scenario.He pushes a button on the gadgets toward the TV; therefore, the TV is
turned on and shows the pictures of the detail of the dish he wants to order.This
operation is an example of a procedure for starting simultaneous (or migratory) UI
between the two clients.By watching the TV, he can order his dinner operating his

21

Figure 2.9: Process flow of communication between an interface client and a logic
server. (1) A service session starts with a request from a client to a
server. (2) After the session starts, the client receives an AIDL doc-
ument from the server. (3) The client constructs a DOM tree from
the document, and generates a UI based on the tree. (4) After the UI is
generated, the user can operate the UI. (5) The client changes the DOM
tree corresponding to the user’s UI operation. (6) The client sends these
DOM changes as messages to the server. (7) The server performs the
service according to the messages from the client.

22

Figure 2.10: Process flow of a migration from the client 1 to the client 2. (1) A new
client (client 2) obtains a session ID from the existing client (client 1).
(2) A simultaneous service session starts by a request with an ID from
a client to a server. (3) After that, the client receives an AIDL doc-
ument used in the session from the server. (4–8) The new client ex-
ecutes the same UI generation process as Figure 2.9 and sends the
user’s operation to the server. (9) After performing the service, the
server broadcasts the message to another client. (10) Client 1 receives
the message, and applies it to the client’s DOM tree and UI.

23

gadget.He uses the two clients simultaneously here.

2.3.2 Protocol

Interface clients and logic servers communicate in accordance with the protocol,
tree structure synchronization protocol(TSSP), which establishes how to express
changes in DOM trees as messages for asynchronous communication. In the pro-
tocol, changes in DOM trees are serialized as XML-based messages containing
whole or partial AIDL documents in order to synchronize two or more DOM trees.
This synchronization brings about the virtual sharing of one DOM tree, which is
changed by clients and the server. To avoid conflicts of messaging when a server
receives from different clients multiple messages, among which there are some
discrepancies, the following priority is given:

1. the state of the server takes priority over its clients, and

2. the message that arrives first takes priority over the other messages.

Note that the lower protocols under the TSSP are not specified, and many existing
protocols which can send text messages are available.

Messages exchanged with the TSSP are categorized into the following two
types: serialized change operations, and just sending whole AIDL documents. A
serialized change operation consists of 3-tuples, whose elements are

• one of the three commands (insert, erase, or replace),

• an XML path (such as “/group[0]/selection[1]”), and

• a piece of AIDL document

(Figure 2.11). A user’s operation changes the current state of a selection element
of a DOM tree in a client, and the client sends the change to a server as a message.
The server receives the message, applies it to the server’s DOM tree, and broadcasts

Figure 2.11: Example of messages used in the tree structure synchronization pro-
tocol (TSSP). It expresses a DOM tree change when a user operates
the power state of the desk lamp control service written in Appendix
A.2. It replaces the state of the selection act for the power state in the
server-side DOM tree.

24

Figure 2.12: Sharing a session using the session ID. With the session ID, multiple
clients can refer the same session. Clients need to communicate with
each other to obtain this ID from other clients for the connections with
the session IDs.

them to the other clients if it has multiple connections. The server then expresses
the state transitions of UIs by sending entire new AIDL descriptions to the client(s).

Attaching an existing session for simultaneous or migratory UIs is performed
by passing session IDs, provided in a certain way when a client is connected to a
server (Figure 2.12). When a client is connected with an ID, the server sends the
DOM tree of the session identified with the ID as a AIDL document to the client.
In that case, the DOM tree is shared and synchronized by two clients and a server.
The means to transfer the session ID among clients is not defined in the protocol,
and this is an issue discussed in Section 2.5.

2.3.3 Interpretation of UI meanings

UI meanings areinferredbased on the hierarchy of RDF classes, which is applied
to the general-specific relationship of the meanings. Therefore, interface clients
can address more meanings than ones actually implemented (Figure 2.13). The
meanings are just labels for concepts of UI functions shared by developers of both
clients and servers. Hence, they require to be interpreted to UI elements actually
generated, and client developers need to determine which meanings are adopted
and implemented. While it is a common problem in related work including the
study of the PUC [17], the proposal system handles this problem with the meaning
inference. UI meaning (class) hierarchy can be enlarged bymergingRDF graphs
that the clients obtain from the servers and the web. That is possible because RDF
has the namespace mechanism on the web, and those graphs can be merged ensur-
ing their consistency. On client side, the step-by-step process of meaning interpre-
tation for the generation of UIs is as follows:

1. An interface client searches itself for implementations of UI corresponding
to the given meaning.

2. • When the client finds some implementations, it employs one of them
for generating UIs and ends this interpretation process.

25

Figure 2.13: Results of UI generation in each client. From the same AIDL docu-
ment (Appendix A.2), a GUI-based interface client can generate (a)
two radio buttons without any meanings and (b) a custom-designed
button with the meaning if it has its implementation. A portable client
like a music player can generate a UI that corresponds to (c) a hard-
ware switch on the device with the meaningPowerState inferred
from the given meaning.

• When the client cannot find any implementation, it downloads some
RDF documents about the meaning from web or internal database.

3. The client merges some downloaded RDF documents and generates one or
more class hierarchy tree(s).

4. The client traversesrdfs:subClassOf property from the given meaning to
its ancestors until it reaches an implemented meaning (inference).

5. • When the client finds some implemented meanings, it employs one of
its implementations and ends this process.

• When the client cannot find any implemented meaning, it renders the
most general UI regardless of the specified meaning.

2.4 Implementations

2.4.1 Framework

The ICLS is implemented as a framework, which is a class library written in Java
language (the Java development kit 1.6) with a semantic web library Jena 2.5.2 [29]
(Appendix B). It consists of 35 classes and 12 interfaces, and offers event-driven
programming model like GUI toolkits. In this framework, although TCP/IP is
adopted as the default lower protocol under the TSSP, other communication pro-
tocols can be usable. Although the specific language and library, Java and Jena
are adopted, this does not imply any dependency since the technologies which we
adopted are well standardized. For example, the library for PC can be easily ported
to cell phones which support Java applications.

It is easy to develop the interface clients and logic servers with the ICLS li-
brary. For developing GUI dialogs with toolkit like Swing, in many cases, some

26

widgets are composited, and event handlers are added into the widgets for cus-
tomizing widgets’ operations. In development with the ICLS library, selection
elements, group elements, and description elements are created and composited,
and in the same way, event handlers are added into the elements. User operations
to the selection elements are automatically applied to the corresponding AIDL doc-
uments represented as classes as well. The communications between the interface
clients and the logic servers are capsulated into the classes,InterfaceClient-
Proxy andLogicServerProxy. Therefore, developers can simply develop the
clients and servers respectively without implementing the TSSP.

2.4.2 Clients and servers

In order to verify the feasibility of the ICLS specification and the stability of the
communication protocol, two interface clients and two logic servers are developed
with the ICLS library. The two clients are a graphical user interface (GUI) client
(Figure 2.14, 2.15) and a voice output client (Figure 2.16). The two servers are ser-
vices of remote controller of virtual appliances: a desk lamp and an audio system.
Although these clients and servers are simple and small in-scale, they include the
essence of more general and typical applications. In addition, the two clients show
that the ICLS can handle the different modalities comprehensively. In this imple-
mentation, the drag-and-drop mechanism of the desk top environment offered by
Java is used for passing the session IDs for UI migration. This is just for the exper-
iment of the implementation of UI migration, and it is future work to develop an
actual inter-client communication protocol.

The GUI client generates GUI dialog boxes using Swing toolkit in Java lan-
guage, according to AIDL documents received from logic servers (Figure 2.14,
2.15). Automatic GUI generation from AIDL documents in client-side requires
both (1) deciding which widget types and their positioning are used and (2) com-
pleting the layout immediately. I call the widget layout satisfying the two condi-
tions, flexible widget layout(FWL) problem, and propose its solution in Chapter
3. This client is an example of device-specific UIs in GUI generation, and it is a
benefit which comes from the design of the AIDL. In this client, I implemented
meaningsLampPowerState, PowerState, andPlaybackController as exam-
ples. Its users can customize whether or not the client uses these meanings. In
addition, the client has a simple mechanism for inferring the meanings with given
RDF class hierarchies written in AIDL documents.

The voice output client offers hierarchical menu UIs with voice synthesis and
gets input from buttons (in a key board in this implements) (Figure 2.16). For
the output of voice sounds, I adopt the library, FreeTTS 1.2 [30], which is an
implementation of Java speech API [31]. It is assumed that this client is an example
of an interface client implemented on mobile devices like cell phones, which have
a speaker and a key pad, although currently it is implemented on PC. Recently,
voice input has become available, but in mobile environments, the combination of
voice output and key input might be still reasonable.

27

Figure 2.14: Screenshots of the GUI interface client. They are ones when the
client connects to the desk lamp control service and its window size is
changed. It is seen that the appropriate widgets (radio buttons, a cus-
tom button, and a check box) are selected automatically for the same
UI function (the power switch) according to the window size. Figure
(d) is one when the widget forLampPowerSwitch is disabled, and the
widget forPowerSwitch is used instead.

28

Figure 2.15: Other screenshots of the GUI interface client. They are ones when
the client connects to the audio control server and its window size is
changed. It is seen that the appropriate widget (a slider) is selected
for the volume control. The selection element of the playback has
meaningPlaybackController, and the client has an implementa-
tion; thus, three buttons with appropriate icons are shown.

29

Figure 2.16: Screenshot of the voice output client connecting to the desk lamp con-
trol server and the flow of its use. In the flow, the speech balloons
represent the voice output of the client, and the buttons in the left side
mean its user’s key typing.

30

2.5 Discussion

2.5.1 Design

I am emphasizing the diversity of devices and platforms, and consequently, have
designed architecture in which the servers handle all functionalities except for spe-
cific UIs, and I have focused on the aspect of input.

As mentioned in Section 3, the ICLS is designed so that interface clients handle
only device- and modality-specific UI processes, leaving other UI processes in
logic servers. You may think the model-view-controller architecture is similar to
the ICLS, and it might separate UI processes from other parts better than the ICLS
does. Furthermore, the document-view architecture has been well-known and used
as a standard architecture in some application frameworks. Those architectures are
used for having application developments easier; however, they are not intended
as to handle and separate various UIs from services like the ICLS offers. In other
words, the ICLS is an architecture which replaces the view of the model-view-
controller or document-view in existing architectures.

To address many kinds of devices and platforms in a standardized architec-
ture, I must consider both input and output of contents. In this paper, I focused
mainly on the input aspect because this is a first step. The easiest method for
output customized for each device and platform is to reserve beforehand multiple
media such as multi-size pictures, multi-sampling-rate sounds, and multi-quality
videos. However, it is just platform-specific developments, which is avoided by
the ICLS architecture. As another way, it is considered to covert media according
to the capabilities of platforms, which is called media transcoding, and forms a
research field. It is future work to utilize achievements in the field for the ICLS.

I intend to engage clients in utilizing their resources for the generation of var-
ious UIs, and do not add any scripting functionality to the current architecture for
design simplicity. In the early step of this work, mobile devices were not pow-
erful like now, and some Java virtual machines had begun to be implemented;
hence, I implemented the ICLS architecture in Java. However, in these days,
many platforms support a scripting language JavaScript in addition to Java, and
this scripting language is widely used in rich web applications in the context of
Ajax. In the current implement of the ICLS, all user operation done in clients is
immediately transferred to servers, and the response speed is sensitive to commu-
nication bands. Therefore, it is effective to reduce communication traffic by using
JavaScript, which enables handling some processes in device locally.

2.5.2 Interpretation of meanings

By using the AIDL, developers can define arbitrary meanings as RDF classes relat-
ing to existing meanings also defined as the classes. The more ICLS-based services
are developed, the more meanings are needed because each service has specific
meanings for its domain. Therefore, it is unrealistic to define them all beforehand.

31

RDF has flexible scalability for handling information on the open world, and it
has the function of specifying resources with URI and the mechanism of class hi-
erarchy. Using RDF, the meanings of selection elements can also have the same
scalability. I am considering that the consensus of the interpretation of meanings
will be built according to the spread of the AIDL.

The infinite meanings can be defined arbitrarily as RDF classes by service
(logic server) developers, but they pose a problem of how client developers de-
cide which meanings need to be implemented. It is a common problem in related
studies including [17], because real world problems are addressed in this thesis. In
the ICLS and the AIDL, however, the meanings represented by RDF classes allow
a client to infer them by traversing class hierarchy trees until it finds a meaning
that can be interpreted. In addition, since RDF documents are considered to be
handled by arbitrary communities with consistency, the architecture can deal with
meanings flexibly by collecting and merging RDF documents written by current
and future developers of services and devices.

2.5.3 Feasibility

Since the ICLS requires keeping client-server connections alive, I performed a
preliminary experiment for checking the response time of generated UIs on the
ICLS. I used two PCs: PC 1 (Pentium 4, 3.2 GHz CPU, 1 GB memory) for the
GUI clients and PC 2 (Trion 64 Mobile, 2 GHz CPU, 1 GB memory) for the desk
lamp control server. The two PCs are connected with 100 Mbps LAN. After a
user operates the power state of the server and the client sends a message, the
server sends another message (indication of changing the availableness of another
selection act) back to the client. In that case, the size of the message from the client
to the server (Figure 2.11) is 350 bytes, and the size of the message from the server
to the client is 219 bytes. Changing the number of clients connected to the server
simultaneously from 1 to 10 on the PC 1, I measured the time of the bidirectional
communication. As the result of the experiment, the response time was 140 msec.
at worst (Figure 2.17), and it is enough performance for real use of UIs.

2.6 Conclusion and Future Work

2.6.1 Conclusion

In this chapter, the users’ new demands for services were raised, and adaptive and
migratory UIs were handled as the solution for the demands. After that, the inter-
face client/logic server was proposed as UI architecture, and the abstract interaction
description language was presented as a method for supporting adaptiveness and
migration of UIs. Lastly, the implementations of the ICLS are also presented.

The interface client/logic server (ICLS) architecture was presented as a new so-
lution, which not only supports migratory UIs but also offers adaptive UIs. To de-
velop the ICLS, the abstract interaction description language (AIDL) is proposed,

32

Figure 2.17: Averages of response time according to the number of clients. The x
axis is the number of clients connected to one server simultaneously,
and the y axis is a time scale (msec.) of the responses. The error
indicators show the standard deviation of each data.

which describes UI functions for device- and service-specific UIs. Moreover, an
ICLS framework was developed, and by using this framework, some implementa-
tions of interface client and logic server were developed in order to verify the fea-
sibility of the architecture. The concept of simultaneous UIs shown in this chapter
is an extension of migratory UIs, and it is a new technique on the research field
of UIs. The AIDL can express the meanings of UI functions with the one of the
semantic web technologies, RDF. That enables clients to perform meaning infer-
ence for service-specific UI generations. This is a new application of semantic web
technologies, for the human computer interaction field.

The first point of this chapter is that the ICLS supports the migratory and si-
multaneous UIs as its architecture design, but as an ad-hoc way for existing ar-
chitectures. In general, when UIs migrate from one device to another, their states
should be gathered and transported along with their structures. In the ICLS, the
states of UIs are always kept in the synchronized AIDL documents; thus, the state
gathering step become not to be needed. The protocol for synchronizing the states
is the mechanism for supporting the architecture in simple way.

The second point of this chapter is that the AIDL can express the meanings
of interactions for describing service-specific interactions with their purposes. For
generating various UIs for devices from one specification, the specification should
be abstracted, and this causes abstracted UIs, which mean ones that do not utilize
device-specific and service-specific features. The representation of meanings in-
troduced here is one approach for this problem, and this feature enables clients to

33

perform meaning inference for adaptive UI generations. In this approach, one of
semantic web technologies, RDF is utilized as an application of this technology.

2.6.2 Future work

For advancing this work, it is necessary to advance the architecture, to evaluate its
availability, and to consider exploiting the outcomes of other work.

As future work for advancing the architecture, there are following two topics:
generation schemes of UIs and a mechanism for choosing appropriate UI compo-
nents with given meanings. In the next chapter, a new method for generation GUIs
from logical description is proposed, but for other sort of UIs, any well-established
schemes are not shown. This will be an important task of this work for future. On
the other hand, there is another issue for considering algorithms for matching the
meanings in AIDL documents to implemented meanings in clients. This will be
a key for exploiting the meaning mechanism newly introduced in this thesis. In
addition, development and evaluation of authoring tools for AIDL documents in
ICLS services are needed for further research, as well.

There are three points to be evaluated: the feasibility of the ICLS, the descrip-
tion capability of the AIDL, and the usability of services based on this architecture.
The first and second ones are evaluated with implementing some practical services
in imitation of existing applications provided on multiple platforms. The third
point to be evaluated is examined with the practical services and their user as ex-
aminees and questioners. In addition, I have to evaluate the response speed of UIs
on networks in detail, although I performed its preliminary experiment, because
our architecture requires keeping client-server connections alive.

It is necessary to consider exploiting achievements of other studies and existing
technologies. For example, outcomes in the area of transcoding, which handles
conversion of the presentation of output information, can be usable for handling
media data on multiple devices. In the way that is mentioned in section 5, the
current design of ICLS does not utilize any scripting technologies like JavaScript
of web applications. However, depending on the outcome of the evaluation of the
feasibility, it might need to reconsider adopting such scripting languages.

34

Chapter 3

Flexible Widget Layout

In this chapter, a new solution for the flexible widget layout (FWL) problem is
proposed, which formulates this problem as a fuzzy constraint satisfaction problem
(FCSP). In the previous chapter, the UI architecture ICLS is proposed, where the
interface clients generate UIs based on AIDL documents, or logical description of
UIs. However, the task for considering how to generate actual UIs, especially GUIs
from AIDL documents remains to be handled. FWL is the automatic layout of GUI
widgets which requires both (1) deciding which widget types and their positioning
are used and (2) completing the layout immediately especially when the system
dose this at run time. In the following sections, the FWL problem is formulated
as FCSP and a method for solving the problem is proposed. The formulation and
method are implemented as a GUI interface client.

3.1 Introduction

3.1.1 Background

The automation of widget layout is one of the most important challenges [32] in
the context of dynamic generation of graphical user interfaces (GUIs). In this the-
sis, bywidget layoutwe mean the process of determining the positions and the
sizes of widgets on a dialog box; it is also used for mentioning the result of the
process (Figure 3.1). The widgets, such as list boxes, radio buttons, and grouping
panels, offer specific functions, and they constitute GUIs hierarchically. The layout
has a significant impact on the usability of applications and services using GUIs,
and it determines the ease of tasks which can be accomplished with them.

In the field of model-based user interface (UI) design [9, 10], widget layout
is more complicated because a layout system needsto select widgetsbefore actu-
ally lay them out. Many systems proposed in researches in the field automatically
generate GUIs based onlogical descriptionsthrough layout processes. The ab-
stract interaction description language (AIDL) mentioned in the previous chapter
is a sort of logical description languages, too. The logical descriptions specify

35

Figure 3.1: Concept of (normal) widget layout. Some assigned widgets are placed
in a dialog box while their sizes, relationships, and hierarchy are be-
ing considered. This process is usually performed by layout managers
offered by GUI toolkits, and the managers are specified by developers.

commonUI functionsindependently of specific devices and platforms, instead of
specifying widgets to be used. Although that is useful for realizing the diversity
of UIs like the UI architecture ICLS, the systems must select widgets which pro-
vide the UI functions required by the description before they place widgets. These
widgets are often determined as some sets of widget candidates because there are
multiple widgets offering the same UI function.

3.1.2 Objective

The task tackled in this chapter is automatic GUI generation from logical descrip-
tions, which requires considering the following two issues:

• How to decide which widgets are used from widget candidates according to
given logical descriptions?

• How to complete the layout in a certain time especially when a system gen-
erate it at run time?

I call the layout handling those two issues,the flexible widget layout(FWL). In
addition, I call the problem of determining a layout which fulfills conditions asso-
ciated with a dialog box and widgets,the FWL problem(Figure 3.2). The FWL
problem is a combinatorial optimization, and the systems for the FWL search the
combination of widgets selecting from their candidates. As solving this problem,
a system can select small widgets with less usability for small screens, or large
widgets with enough usability for large screens. This feature can expand the pos-
sibilities of layout, but, the systems need to finish the layout in real time when the
generation processes are performed at run time of service use.

In this chapter, the FWL problem is formulated as afuzzy constraint satisfac-
tion problem(FCSP) [33]. Constraint conditions of the FWL problem includes,
except for physical conditions, subjective ones involved with usability, sensitivity,

36

Figure 3.2: Concept of flexible widget layout. Before placing widgets, they need
to be selected from some candidates of widgets. Here, the candidates
include some container widgets. In addition, the time for the layout is
limited when it is done at run time.

etc. such asdesirablewidgets andconspicuouslayout. Thus, it is difficult to obtain
a precise solution which satisfies all constraints. For tackling this difficulty, I in-
troducefuzzinessinto those constraint conditions, and aim at obtaining a practical
solution at run time. FCSP is an extension ofconstraint satisfaction problem(CSP)
for handling the fuzziness of constraints of real world problems. As using FCSP,
the desirability of selection is expressed asfuzzy constraintsstraightforward. In
this way, existing technique of FCSP can be utilized without extending the original
framework of FCSP, and layouts as desirable as possible can be obtained.

In addition to the formulation, I propose a method for selecting appropriate
widgets automatically and putting them in a dialog box, and show an implemented
layout system of the method. The layout process is divided into three phases,
and adopts a few optimizing techniques for realizing the layout in a practical time
enough not to keep GUI users waiting. Along the process, the layout system gen-
erates a GUI dialog box based on a logical description given as an input. I claim
that the approach can handle adequately complicated real applications, without de-
pending on specific domains, and complete the layout in real time.

3.1.3 Related work

The related work of the FWL can be separated into four categories. As a part of
model-based UI architecture, the FWL should be compared to the related work
mentioned in Section 2.1.3 and other studies especially addressing the problem of
GUI layouts for multi-platforms. On the other hand, as a sort of layout problem,
the FWL relates to the field of facility layout problem (FLP), and the field of LSI
layout should be evaluated as the related work of the FWL. In addition, except for
current studies, layout managers of GUI toolkits can be mentioned as existing and
widely used layout systems. In the following paragraphs, similarity and difference

37

of some studies in each category are explained respectively.
Researches in the field of model-based UI design mentioned in Section 2.1.3

handle how to realize the utilization of various devices and platforms rather than
how to generate GUI layouts, but, there are some studies addressing the same prob-
lem as in this thesis. The ubiquitous interactor [12] shows the results of GUI gener-
ations from logical descriptions, where it seems that their system performs layouts.
However, the authors do not mention how any concrete layout methods are used
and its automation is done in the system. The personal universal controller [15] is
proposed for remote controlling various appliances with PDAs. Although a rule-
based layout algorithm is explained, it is dependent on specific application domain
and does not handle the widget selection corresponding to the same functions. In
XWeb [20], the need of both the widget selection and layout is mentioned, but the
proposed system does not handle their combination. As named as the design of
graceful degradation of UIs, a method of building usable UIs for multi-platform
systems is proposed [34, 35]. It addresses GUI generations for platforms having
different screen resolutions more generally than as addressed in this thesis; there-
fore, it is very suggestive for the future improvements of the FWL although it
does not propose actual method for the automation of GUI layouts. In addition,
an intelligent editor for GUIs based on the concept of plasticity of UIs [36]. It
proposes a model and a visualization technique for managing the plasticity, and it
implemented them in the PlastiXML tool, a plug-in of existing tool the GrafiXML.
Although it also does not handle the automation of GUI layout like that handled
in this thesis, it models the plasticity of UIs as Moore machines, a variant of finite
state machines, while the FCSP is used here.

The FLP is for managements of facility positioning and recourse move-
ments in manufacturing plants, hospitals, etc., and researched for two and more
decades [37, 38]. It is a combinatorial optimize problem for minimizing invest-
ments, transfer costs, etc., and it is involved in adjacency of placed items and flow
of resources between the items. As an application for human computer interaction,
a system was proposed where the FLP is used for the UI components layout [39]. It
is to locate the menu/icon items on the screen/keyboard/mouse in order to achieve
the greatest efficiency in exchanging the inputs and outputs between the user and
the system. The authors of [39] claim that a one-to-one relationship exists between
the manufacturing facilities layout problem in a plant and the textual and graphical
user interface components layout problem. They showed an example addressing
the closeness relationship of UI components (such as Del, Cut, Paste, Right, and
Spell check in MS-WORD). As saying in the context of FWL in this thesis, what
the FLP handles is generating a UI model, which consists of parental and sibling
relationships of UI elements. It is different that the FWL considers physical align-
ments of UI components based on UI model, and I am exploring FLP to utilize it
as future work. In addition, in papers of FLP, generally speaking, CSP, especially
FCSP are not adopted for its methodology.

Many studies for the LSI or VLSI layout problem are proposed, but they do not
consider the speed of layouts because they do not need it. In the early period, the

38

objective of these layout problems is to wire completely and to shrink their dimen-
sions, and it has advanced to the multi-criterion optimization [40]. The automation
of LSI layout is a combinatorial optimization problem, and various algorithms are
proposed for it; thus, they can be applied to other study fields. However, in the
FWL, the practical speed of solving layout problems is required, and it is the char-
acteristic which is not handled in the LSI layout.

Existing layout managersmay seem to be solutions for the problem. In these
days, many GUIs are developed with toolkits such as Swing [41], the windows
forms [42], the visual component library [43], GTK+ [44], and Qt [45]. They offer
layout managers or related mechanisms called as other names. They perform at
run time and decide the positions and sizes of widgets (Figure 3.1), but they do not
handle the selection of suitable widgets. In the present circumstances, the widget
selection is done by GUI developers considering layout.

This chapter consists of six sections. In the first section, as introduction of
this chapter about the FWL, its background, objective and related work were men-
tioned. In the following Section 2, the outline and structure of the FWL problem is
mentioned, and how the FWL is to be handled as a problem is explained. In Section
3, the outline of FCSP is explained, followed by the formulation of the FWL with
FCSP and the reason that FCSP is introduced to the FWL are explained. In Section
4, a method for solving the problem and an implementation of a layout system are
shown with the explanation of multiple phases of the layout process and how it is
optimized. In the following Section 5, some consideration about the speed of the
system and the validity of the formulation of the FWL are discussed. Lastly, in
Section 6, conclusion and future work are mentioned.

3.2 Layout Problem

3.2.1 Outline

The flexible widget layout problem is a solution search problem, whose search
space is the combinations of widgets, and therefore, solving a FWL problem means
finding better combinations of widgets. The widget combination must be layout-
possible and should be as desirable as possible. Each widget is selected froma
widget candidate set, which correspond to a certain UI function, includes some
widgets, which can represent the same UI function or composition of UI functions.
Each widget has differentminimum sizeanddesirability. The sizes of widgets are
used for hard constraint conditions which decide possibility of the layout, and their
desirability is used for soft constraint conditions which decide its suitability. A
widget selection process from the candidate sets has following two steps:

1. A system resolves the mappings between a UI function and a set of widget
candidates.

39

Table 3.1: Tradeoff between usability and layout-ease of widgets

Radio buttons Drop down list box

Function Same Same
Usability Better Worse
Layout-ease Worse Better

2. It selects actually used widgets from the mapped sets in terms of the dimen-
sions and usability of the widgets.

After that selection process, the system places all selected widgets in a dialog box
with no overlapping but gaps among them, and it makes some groupings of related
widgets in the same rectangles.

The complexity of the FWL is caused by the tradeoff between widget usability
and the ease of layout involving their dimensions (Table 3.1), and especially, there
is a tendency that lager widgets have more difficulty for layout [46–48]. For exam-
ple, you can use a list box or a drop down list box for expressing the UI function of
selecting one item from an item list. From the standpoint of usability, since users
can view many items at once, the former is better, but it needs a larger area and may
not be placed in a small dialog box (or a small screen). In the FWL, this tradeoff

must be considered when performing optimum layout.
As a UI model generally expressed in logical descriptions, in this chapter, the

selection act model is adopted. In the model, UI functions are represented as se-
lection acts (or elements), and which are grouped to make a tree graph (Figure 2.6,
repeated below as Figure 3.3). A set of UI elements in the model is expressed as
U = US ∪ UG ∪ UD, whereUS is a set of selection elements,UG is a set of group
elements, andUD is a set of description elements. Selection elementui ∈ US is
represented here as a modified 6-tuple:

ui = 〈Li ,ei , ti , oi ,mi , r i〉, (3.1)

whereLi is the list of choices, and|Li | is the number of choices.ei ∈ {single,
multiple} is the selection size,ti ∈ [1, 10] is the importance, andoi ∈ {true,
false} denotes the flag meaning whether its choices are opposite when they have
two choices.r i is a newly added element for convenience of explanation, and it
is a flag which is true if the type of choice list isNumeric and constrained by
Range, and otherwise, it is false. Group elements make groupings of relevant
selection elements and other group elements (Figure 2.6). All selection elements
are grouped and make a tree graph of UI functions, whose root is a group, and this
tree will correspond to a dialog box to be generated. In addition, the selections and
groups can have a description element for their explanations.

40

Figure 3.3: Selection act model expressed in an AIDL document. The group ele-
ments make both parental relationship between itself and its child ele-
ments; and sibling relationship among them. All selection elements are
grouped and make a tree graph of UI functions, whose root is a group.

3.2.2 Used widgets

The UI elements of the model are represented as widgets. All widgets used here
W = WN ∪WC are rectangular and have their own presentations; also they are di-
vided into two categories: normal widgetsWN for representing selection elements
and container widgetsWC for group elements and labeling. In this thesis, as the
normal widgets, since they are adopted by many toolkits (such as [41, 42, 44, 45]),
a subset of widgets is used (Figure 3.4) and their characteristics are as follows:

Check box (CB) A single check box is used for selecting one item between on and
off, which items are inter-exclusive (or boolean type). Its two items must be
totally opposite, and it is then easily understandable for users.

Radio buttons (RBS) Radio buttons are buttons used for changing multiple states,
of which only one is selected in one time. They are grouped and aligned in
a frame indicating their grouping.

Drop-down list box (DLB) A drop-down list box is used for selecting one item
from pop-up list, and useful when there is less space on a dialog box. How-
ever, it can show only one item before its pop-up button is clicked.

Check boxes (CBS)Multiple check boxes are used for selecting multiple items.
All items must be shown in a screen, and thus, a user can figure out them at
once, although a large space is used.

List box (LB) A list box is used for both single and multiple selections. It can
have one or two scroll bars, and handle large number of items. It is better
than a drop-down list box because it can show a part of items at once, but it
consumes larger space.

Button (B) A button is used for indicating a command, and it only has no states.
It is sometimes used as a toggle button but that is not considered here.

41

Spinner (SP) A spinner or a spin box is used for selecting one from serial items
on a space-limited dialog box. It has two buttons of up and down, and they
are small for clicking, and thus, it should not be used the items are large.

Slider (SL) A slider is used for selecting a value from serial ranged values, and
shows current selection beside it. It is understandable because it itself indi-
cates what a user need to input is a value.

Note that a single check box and multiple check boxes are distinguished because
they are used for different functions. In addition to the widgets for selection, for
representing description elements,caption label(CL) andabbreviation label(AL)
are also used as the normal widgets. They are the same in respect of that they are
label widgets usually offered in toolkits, but different their string.

There are some container widgets used in this thesis. As container widgets,
vertical array (VA), horizontal array(HA), and tab pages(TP) are used for rep-
resenting group elements (Figure 3.5). They contain multiple child widgets, and
align them vertically or horizontally, or lap over with tab pages respectively. For
representing thepositioningof description elements, container widgetsleft label-
ing (LL) andtop labeling(TL) are used (Figure 3.6). They contain one child widget
and one description widget, and decide their alignments. As an exception, descrip-
tion widgets of vertical array, horizontal array, and tab pages are always expressed
with top labeling widget and fixed their top. Especially, a dialog box is handled as
a container widget, which contains only one child widget.

3.2.3 Structure

Widget candidate sets of FWL are determined according to logical descriptions of
UI model, which contains UI functions and their groupings.

The desirabilityα ∈ [0, 1] is also defined corresponding to the types of normal
widgets. The desirability of each normal widget is defined asαCB for a check box,
αRBS for radio buttons,αDLB for a drop-down list box,αCBS for check boxes,αLB

for a list box,αB for a button,αSP for a spinner, andαSL for slider. Especially, the
desirability of a list box is defined as mutable according to the rate of its visible
items; therefore, it has the rangeαLBmin ≤ αLB ≤ αLBmax. The desirability is
ordered in terms of the usability of the widgets. In this thesis, referring to [46,47],
in terms of the usability of the widgets, the order of the desirability is defined as

αDLB < αLBmin < αLBmax< αSP< αRBS< αCB < αCBS= αB = αSL. (3.2)

The widgets have the reverse order in terms of their dimensions. Moreover, the
desirability of caption label and abbreviation label are defined asαCL andαAL re-
spectively. Their order is defined as follows:

αAL < αCL. (3.3)

42

Figure 3.4: Widgets used in this thesis. These are screenshots of Swing widgets,
and they are usually adopted in other toolkits, although they have a
little different appearance.

Figure 3.5: Three group widgets for positioning child widgets of a group element
(CW stands for child widget). Tab pages widget has no advantage over
other two widgets because a user cannot understand what widgets are
shown before he or she clicks tabs.

Figure 3.6: Two labeling widgets for positioning a child widget and its description
(CW stands for child widget).

43

Figure 3.7: Tree structure of widget candidate sets. UI elements of the model and
sets of widget candidates are related, and the sets construct a tree struc-
ture as well. Note that the candidate sets of labeling containers do not
correspond directly to UI elements.

Table 3.2: Selection widget candidates

Candidatew ∈Wi

Conditions

Selection size Item size Is opposite Is ranged
ei |Li | oi r i

Check box single |Li | = 2 true -
Radio buttons single 0 < |Li | < 6 - -
List box - 6 ≤ |Li | - -
Drop-down list box single 0 < |Li | - -
Spinner single 0 < |Li | < 10 - true
Slider single 10≤ |Li | - true
Check boxes multiple 0 < |Li | - -
Button - |Li | = 0 - -

Similarly, each container widgets also has desirability. The desirabilityαVA, αHA,
andαTP are defined for vertical array, horizontal array, and tab pages.αLL andαTL

are defined for left labeling and top labeling. Their order is defined as follows:

αTP < αVA = αHA, (3.4)

αTL < αLL. (3.5)

Selection elements and description elements are mapped to the corresponding
sets of normal widget candidatesWi ⊂ WN (Figure 3.7). Selection elementui is
expressed with widgetw ∈ Wi chosen from its corresponding widget candidate
set (Table 3.2). The widget candidates table is created by also referring to [46,

44

47], but it is possible to apply users’ preferences there. Based on the table, for
example, widget candidatesWi corresponding toui , whereei = single and|Li | =
5, are determined as the set containing a drop-down list box and radio buttons (see
Table 3.2). A description element is expressed with the set of widget candidates
containing a caption label and an abbreviation label if it is available. In the layout
process, it is decided which one of the candidates are used. Each widget candidate
w ∈ Wi has uniquely a minimum sizemsw = 〈ms.widthw,ms.heightw〉, which is
defined by corresponding UI element. Ifw is a representation of selection element
ui , its minimum size is derived by the parameters ofui (|Li |, the maximum width of
item strings ofLi , andoi). Its detail is mentioned in Section 3.3.2.

Group elements and positioning of description elements are mapped to a set of
container widget candidatesWi ⊂ WC, and they are expressed with widgetw ∈ Wi

(Figure 3.7). A group element is represented as a set containing a vertical array, a
horizontal array, and (a container of) tab pages. A positioning of a description is
represented as a set containing a left labeling and a top labeling. A description ele-
ment of a group is fixed on the top of one of the widgets for group element; hence
it has no candidates. Each container widget candidatew ∈ Wi also has a unique
minimum sizemsw = 〈ms.widthw,ms.heightw〉. The minimum sizes of container
widgets are defined by the minimum sizes of candidates of its child widgets. Its
detail is also mentioned in Section 3.3.2.

Based on the minimum sizes of widgets, a system evaluates whether it is pos-
sible to execute the layout defined by the selections from widget candidates, where
the possibility means that the child widgets of a container can be placed in its rect-
angle. We mention the condition expression for that possibility in the next section.

3.3 Formulation

3.3.1 Fuzzy constraint satisfaction

Constraint satisfaction problem (CSP) is one of fundamental technologies in the
field of the artificial intelligence. It is a generic term of search problem finding
value combinations which satisfies given constraints, and it is NP-complete prob-
lem. It is defined by the following components:

• a finite set of variablesX = {xi}mi=1,

• a finite set of domains of valuesD = {Di}mi=1 for the each variable, and

• a finite set of constraintsC = {ck}rk=1.

Constraintck denotes a relationRk on a subsetSk(Sk ⊂ X) of X. Sk is called the
scopeof Rk. In other words, whenSk = {xk1, . . . , xk|Sk|

},

Rk ⊆ Dk1 × · · · × Dk|Sk|
, (3.6)

45

whereck is called a unary constraint when the size of scope|Sk| = 1, or it is called
a binary constraint when|Sk| = 2. An assignment to the variables in scopeSk of
constraintck is defined as follows:

v [Sk] ∈ Dk1 × · · · × Dk|Sk|
. (3.7)

If v [Sk] ∈ Rk, constraintck is satisfied, otherwise, is not satisfied. To finding a
solution of a CSP is to finding an assignment of variablesv [X] which satisfies its
all constraints. For CSP, some general-purpose solvers exist.

The structure of CSP can be represented by a constraint graph, where nodes
and edges of the graph are corresponding to variables and constraints (Figure 3.8).
If constraintck is binary, the two nodes in its scope are connected by an edge. Ifck

is unary, the one node in its scope is connected by an edge as a self-loop. Ifck is
ternary or of higher order,ck is represented by a hyperedge, and the graph becomes
a hypergraph. However, only unary and binary constraints are used in this thesis.

Fuzzy constraint satisfaction problem (FCSP) is one of the extensions of tra-
ditional CSP. CSP is a simple model and its hard (or crisp) constraints are too
rigid for formulating real world problems. Therefore, FCSP introduces one of soft
constraints,fuzzy constraint, which is not necessarily satisfied, and considers the
satisfaction degreeof the constraint. In FCSP, constraintck denotes a fuzzy relation
µRk, which has its membership functions defined by

µRk :
∏
xi∈Sk

Di → [0, 1]. (3.8)

In other words, the membership value is defined by assignmentv [Sk] to the vari-
ables in scopeSk of constraintck. This value is called the satisfaction degree of a
fuzzy constraint. Since a FCSP requires the satisfaction of the fuzzy conjunction of
all fuzzy constraints, the overall satisfaction degree of the whole FCSP is defined
as the minimum satisfaction degree as follows:

Cmin(v) = min
1≤k≤r

(
µRk

(
v[Sk]

))
. (3.9)

To solve a FCSP means to solve a optimum problem, which is finding the assign-
ment accompanied by the best satisfaction degree of the problem from all combi-
nations of assignments (Figure 3.9).

3.3.2 Flexible widget layout with FCSP

The FCSP framework is introduced to the FWL here, and the desirabilityα of the
widgets is represented with satisfaction degrees of fuzzy constraints. Unary fuzzy
constraints are used for expressing the desirabilityα. Fuzzy constraints enable you
to represent naturally the gradual rules of the widget desirability without introduc-
ing any other objective functions. The parental relationship among widgets is also
represented with binary crisp constraints. Crisp constraints can be handled as par-
ticular cases of fuzzy constraints. Using these crisp (or hard) and fuzzy (or soft)
constraints accordingly, the FWL problem is formulated, which can be applied
some existing algorithms for solving FCSP.

46

Figure 3.8: Example of constraint graph. In this graph, the six variables (nodes) are
connected with the eight constraints (edges), and in each variable, the
domain is set. A binary constraint is expressed as the edge connected
to two nodes, and a unary constraint is expressed as a self-loop.

Figure 3.9: Example of assignments of constraint graph of fuzzy constraint satis-
faction problem (FCSP) (see also Figure 3.8). The values in the nodes
indicate the assignments to the variables, and the values beside the con-
straints indicate their satisfaction degrees. In these assignments, the
lowest value is 0.2 (bold typed), and thus, the overall satisfaction de-
gree of this FCSP is also 0.2.

47

3.3.2.1 Variables

In the formulation, variablexi ∈ X = XN ∪ XC corresponds to widget candidate
set Wi and the value assigned in it expresses a selected candidate from the set.
VariablesXN andXC express the set of variables for the normal widget candidates
and container widget candidates respectively. For example, UI elementui ∈ U
corresponds to widget candidate setWi ⊂ W, and next it corresponds to variable
xi ∈ X. In FCSP, parental relationships of the UI model are expressed as binary
constraints between the variables (it is mentioned above). Thus, a tree structural
constraint graph is constructed from the tree of the model. Note that UI elements,
groups, descriptions, and the positioning of the descriptions, are also expressed
with the variables. A group or a positioning of the descriptionui ∈ UG is expressed
with xi ∈ XC, while a descriptionui ∈ UD itself is expressed withxi ∈ XN.

3.3.2.2 Domains

The values of domains are tuples according to each variable type, and they are
used for that constraints calculate their satisfaction degrees. As mentioned below,
each tuple of a domain consists of a widget and a minimum size of the widget.
In addition to those elements, a tuple of a domain for container widget candidates
contains the combination of the values of the domains for its child widgets. The
minimum sizes of normal widgets are determined by the parameters of the based
selection elements and description elements. The minimum sizes of containers are
calculated by the minimum sizes of the child widgets of the containers.

Domains for normal widget candidates variables The domain of normal wid-
get candidates variablexi ∈ XN is a set of the tuples, which consists of normal
widgetw and its minimum sizemsw = 〈ms.widthw,ms.heightw〉 as follows:

Di (∈ DN) =
{〈w,msw〉 | w ∈Wi ⊂WN

}
. (3.10)

The minimum widths of normal widgets are the sum of the width of the widest one
of its items and the widths of the control parts such as a vertical scroll bar, a radio
button, and a check box. The minimum heights are defined by the type of widget,
their item size, and the item heightitem_h (Table 3.3).

Domains for container widget candidates variables The domain of container
widget candidates variablexi ∈ XC is a set of the tuples, which consists of container
widgetw, a combination of values of child widget candidatesM, and its minimum
sizemsw,M = 〈ms.widthw,M,ms.heightw,M〉 as follows:

Di (∈ DC) =
{〈w,M,msw,M〉 |
w ∈Wi ⊂WC, M ∈ Dchild(i,1) × · · · × Dchild(i,cn(i)),

checksize(Wi ,msw,M)
}
, (3.11)

48

Function 1 checksize(Wi ,ms)
if Wi is root then

if ms.width≤ given_widthand ms.height≤ given_heightthen
return true

else
return false

end if
else

ms′ ← ems′(Wi ,ms)
return checksize(Wi ,ms′)

end if.

where child(i, j) is the function for obtaining the index ofjth child of Wi , cn(i)
is the number of children ofWi . The function checksize(Wi ,ms) checks whether
the combination of its parameters is available or not with the estimated minimum
sizes (ems) of the child widgets (Function 1). With this function, the domains for
container variables are pruned when the problems are being constructed. In the
function,given_width andgiven_heightare the size of the client area of the dialog
box, and function ems is defined as follows:

Wi ⊂WC, ems′(Wi ,msw∈Wi, j) = min
w∈Wi

(
ms′′w,{ems(Wi,1),...,msw,...,ems(Wi,cn(i))}

)
, (3.12)

Wi ⊂WC, ems(Wi) = min
w∈Wi

(
ms′w,{ems(Wi,1),...,ems(Wi,cn(i))}

)
, (3.13)

Wi ⊂WN, ems(Wi) = min
w∈Wi

(msw)

=
〈

min
w∈Wi

(ms.widthw),min
w∈Wi

(ms.heightw)
〉
. (3.14)

The container widgets have different sizes of child widgets; therefore, the sizes of
tuples of their domains are also different. The minimum size of vertical array (VA),
horizontal array (HA), and tab pages (TP) is calculated based on the minimum

Table 3.3: Minimum widget heights

Widget Minimum height (without edges)

Check box item_h
Drop-down list box
Spinner
List box min(|L|, 4) item_h
Radio buttons |L| item_h
Check boxes
Slider slider_h
Button button_h

49

sizes of its child widgetsmswi, j =
〈
ms.widthwi, j ,ms.heightwi, j

〉
as follows (where

gaps among child widgets and tabs space are omitted):

msVA∈Wi =

〈
max

1≤ j≤cn(i)

(
ms.widthwi, j

)
,
∑cn(i)

j=1
ms.heightwi, j

〉
, (3.15)

msHA∈Wi =

〈∑cn(i)

j=1
ms.widthwi, j , max

1≤ j≤cn(i)

(
ms.heightwi, j

)〉
, (3.16)

msTP∈Wi =

〈
max

1≤ j≤cn(i)

(
ms.widthwi, j

)
, max

1≤ j≤cn(i)

(
ms.heightwi, j

)〉
. (3.17)

The minimum sizes of a left labeling (LL) and a top labeling (TL) are also cal-
culated based on the minimum size of their child widgets. The sizes are de-
fined by the minimum sizes of their description widgetmswi,D =

〈
ms.widthwi,D ,

ms.heightwi,D

〉
and their one labeled widgetmswi,C =

〈
ms.widthwi,C,ms.heightwi,C

〉
as follows (where gaps between the two widgets are omitted):

msLL∈Wi =
〈
ms.widthwi,D +ms.widthwi,C, max

(
ms.heightwi,D

,ms.heightwi,C

)〉
,

(3.18)

msTL∈Wi =
〈

max
(
ms.widthwi,D ,ms.widthwi,C

)
, ms.heightwi,D

+ms.heightwi,C

〉
.

(3.19)

When the estimated minimum sizes of container widgets are calculated, the above
equations are also used, but, instead of actual widget sizes, the estimated minimum
sizes of child widgets are used there.

The method to construct the domains for container widget candidates is the
same method as seen in the binarization of arbitrary n-ary constraints with the hid-
den variable encoding [49,50]. To simply formulate composite relations between a
container widget and its child widgets, n-ary constraints could be used. There, an
n-ary constraint is connected to a container variable and its child variables, and its
constraint condition is that the total size of its children is less than its container size.
In this thesis, since many existing FCSP solvers are designed for binary problems,
for keeping the FWL problem available, it is formulated as binary problem by the
binarization method. However, the binarization requires calculating all the combi-
nation of child values and enlarges the domain sizes. To avoid this enlargement,
the domains are constructed in the reverse breadth first order (or from bottom to
top) of the tree structure of candidate sets, doing pruning based on the estimation
of minimum sizes of child widgets.

3.3.2.3 Constraints

Each variable except for a dialog variable is connected by one of desirability con-
straintsCD, and two variables corresponding to a container and its child can be
connected by one of parental relationship constraintsCP. Constraintck ∈ CD is
unary and denotes the desirability of the value of its scopexk1 as their satisfaction

50

Figure 3.10: Example of the binary constraints, their scopes, and the assignments.
In the constraint graph,X1 is a container widget and others are its child
widgets. In these assignments, valuev3 is assigned to the variable
of the 1st childX1,1, and valuev6 is assigned to the variable of the
2nd childX1,2. The value assigned to the variable of the container is
{w1, 〈v3, v5〉,ms1}, and it contains the value assigned toX1,1 as the 1st
element of the bracket. Thus, binary constraintc2 is satisfied. On the
other hand,v1 does not contain the value assigned toX1,2 as the 2st
element of the bracket; hence, binary constraintc3 is not satisfied.

degrees. If the scope ofck is Sk = {xk1} and the value ofxk1 is v (∈ Dk1) = 〈w, ...〉,
wherew ∈Wk1, the satisfaction degree ofck is calculated as follows:

ck(v) (∈ CD) = des(w), (3.20)

wheredesis the projection from the widget candidates to their desirabilityα. Con-
straintck ∈ CP is binary and denotes whether the assignments of the variables of
its scope correspond with each other. As mentioned above, each value is a tuple
of a combination of widget and its minimum size, and thus, this constraint accords
this combination with the actual combination of its child widgets. If the scope of
ck is Sk = {xk1, xk2}, the value ofxk1 is vp (∈ Dk1) = 〈w,M,msw〉, and the value of
xk2 is vc ∈ Dk2, the satisfaction degree ofck(vp, vc) is calculated as follows:

ck(vp, vc) (∈ CP) =

1 if vc = M
[
childindex(xk1, xk2)

]
0 otherwise

. (3.21)

where childindex(x1, x2) is the projection from pairs of variables to the index of
the widget candidates (corresponding tox2 ∈ X) as a child of the parent widget
candidates (corresponding tox1 ∈ XC) (Figure 3.10). These constraints connect
tuples are called as compatibility constraints in [50].

A FCSP consists of variables, domains, and constraints; thus, after the formu-
lation mentioned above, the FWL problem is completely represented as a FCSP.

51

For instance, an example showed in Section 3.4.3 (Figure 3.12) consists of 19 vari-
ables and domains, and 31 constraints, and the average size of the domains is 1215.
It can be solved with general-purpose FCSP algorithms.

3.4 Method of Layout

3.4.1 Three phases

In this thesis, a layout method is proposed as a layout system for generating GUI
dialog boxes. After formulating of the FWL problem, it is still remained to con-
sider how to construct the FCSPs of the FWL and how to solve them. The layout
system receives an AIDL document as input and outputs a dialog box with a lay-
out composed of Swing [41] widgets. The layout system consists of the following
three phases of transformation (Figure 3.11):

Phase 1creating a FCSP from a UI model in an AIDL document,

Phase 2solving the problem with an algorithm for obtaining a solution, and

Phase 3performing an actual layout based on the solution.

Creating problem phase In the first phase, a FCSP is generated from a given
AIDL document through the pruning process. First, group elements, selection ele-
ments, and description elements including the positioning of description elements
in a document are related to corresponding widget candidate sets. Next, the can-
didate sets are related to the variables and their domains, which are pruned as
mentioned in the previous section. Finally, a constraint graph having one-to-one
correspondence to the UI model created, where the UI elements are seen as each
corresponding typed variable and their parental relationships are seen as binary
constraints. This pruning process is called the static pruning comparing to another
pruning (the dynamic pruning) done in the next phase.

Solving problem phase In the second phase, for a better assignment of the vari-
ables or the best combination of widgets, the system iterates solving the FCSP
generated in the previous phase. The system uses theforward checking algo-
rithm [51, 52], which is extended for FCSP. In this method, the algorithm assigns
the variables in the reversed breadth first order like when the construction of the do-
mains. While iterating solving, the system sets a threshold of satisfaction degrees,
and prunes the values of the domains which satisfy the corresponding unary con-
straints below the threshold. The threshold is calledthe worst satisfaction degree
(WSD), and the pruning is called the dynamic pruning. The precise description of
the process of solving the FCSP is as the following 4 steps:

52

Figure 3.11: Three phases for flexible widget layout. Each phase is transformation
of input and output. At the first phase, a UI model is transformed into
a FCSP, next, the FCSP is solved and the solution (an assignment of
the variables) is obtained, and finally, the actual GUI dialog box is
generated from the solution.

Step 1 The system prepares satisfaction degree setA by collecting possible sat-
isfaction degrees from all unary constraints. Since the all unary constraints
express the desirabilityα of each widget candidates,A is a discrete set.

Step 2 The system chooses and removes the maximum onea ∈ A, and prunes
values in the domains worse thana based on the unary constraints. At this
step, the minimum heights of list boxes in the domains are reset as follows
(where|Li | andti are the parameters of selection elements):

ms.heightLB∈Wi
= min(|Li |,4) item_h

(
1− αLBmax− a
αLBmax− αLBmin

) 1
ti

. (3.22)

Step 3 The system solves the FCSP with the algorithm.

Step 4 If the system finds an assignment of the variables whose satisfaction degree
is equal to or better thana, it moves to the next layout phase; otherwise, it
moves back to the step 2. IfA is empty, the system stops in failure.

53

Placing widget phase In the last phase, based on the assignments of the variables
or the selected candidates, the system decides the positions and the sizes of the
selected widgets, and then it places them in a dialog box. In the FWL, the variables
express the selections of widget candidates; therefore, the solution of a FCSP is
not an actual layout. The system generates widgets adopted in the solution, and
then it sets their concrete positions (pixels) and sizes (pixels) based on the selected
container widgets (Figure 3.12). Note that this process of deciding positions and
sizes itself is the same as the process performed by existing layout managers in
toolkits except our system does based of the solution.

3.4.2 Optimization

For the FWL, the speed of solving its problem is important because it is intended
for using practically as GUI interface client of ICLS architecture. Therefore, at
the creating problem phase, the layout system pruned the domains statically based
on the estimated minimum sizes. At the solving phase, in addition, the system
iteratively pruned the domains dynamically with the worst constraint satisfaction
degrees. As another optimization, I tried to utilize the improved version of the
algorithm with the technique ofdynamic variable ordering[53].

For solving the problem rapidly, the system prunes the domains based on giving
WSDs before applying the algorithm. The forward checking algorithm searches
systematically through the search space of the possible combinations of the assign-
ments to the variables until it finds a solution. It is guaranteed to find a solution if
one exists, but it has the disadvantage that it requires large cost of time. Hence, it
is effective to prune the domains and to reduce the problem scale.

The dynamic variable ordering (DVO) technique optimizes the order in which
the variables are assigned during searching with systematic algorithms [53]. For
the FWL system, it is possible to apply the forward checking algorithm improved
with the DVO with the minimum remaining values (MRV) heuristic. The MRV is
one of the popular reordering heuristic for the DVO, and it assigns next the vari-
able that has the fewest values (the smallest domain) compatible with the previous
assignments. It means assignments are done almost in the reversed breadth first
order, because the variables of theleavesin the tree structure of FCSP have a few
widget candidates, and other variables have more their combinations.

3.4.3 Implementation

The layout system is developed as a part of GUI interface client of ICSL architec-
ture. It is implemented using Java 6 on a PC (AMD Turion 64 CPU 2.0 GHz, 768
MB main memory, and Windows XP Professional edition). For implementing the
system, I have developed a class library for CSP and FCSP with Java, and named
Stlics. This library represents variables, domains, and constrains as Java objects,
and offers some solvers (algorithms) including the forward checking. Using them,
arbitrary FCSP can be constructed and solved with the solvers. The desirabilityα∗

54

Figure 3.12: Results of flexible widget layout. They are generated from the same
AIDL document (UI model) with different dialog sizes.

55

of the widget candidates are given empirically assuming typical applications (Table
3.4). The implementation reflects the resize of the dialog box in the re-layout of
the widgets (Figure 3.12). In the implementation, the specific GUI toolkit is used,
but the method proposed here does not depend on it

3.5 Discussion

3.5.1 Speed of layout

The following preliminary experiments are performed for investigating the rela-
tionships between the speed of the FWL and some conditions: the complexity of
a base UI model, the size of a dialog box, and an algorithm for solving. For ex-
periments, I developed a measurement application, which automatically changes
the layout size (instead of dialog size) and measures the time for layout and the
desirability (satisfaction degree) of the layout.

By using the measurement application, the following two preliminary experi-
ments are performed for checking the relationship between the complexity and the
speed when applying the forward checking algorithm without the DVO. First, I ex-
amined the relationship between the complexity of UI model and the average of the
layout time and the desirability. For this experiment, the example model (Figure
3.12), and extended example model with one, two, or three additional UI elements
are used (Figure 3.13). The results show the FWL problem is sensitive to the scale
of the UI model, and it might be directly affected by the enlargement of the widget
combinations. Second, I examined the relationship between the size of dialog box
and the average of the layout time and the desirability with the example four UI
models (Figure 3.14, 3.15, 3.16, 3.17). The results show that the area of dialog
boxes also affects the time. One of its main reasons is because when the dialog size
is small, in the solving phase, applying the algorithm is iterated many times with
from better WSD to worse one. In addition, when the WSD is low, many widget
candidates are not pruned and the search space remains large, and therefore, the
standard deviations of each example also increase according to the complexity of
the model. The average desirability is also affected by the scale of the UI model,
and decreases in accordance with the complexity

By using the same measurement application, I performed another experiment
for checking the efficiency of the DVO with the MRV heuristic in the algorithm for
the FWL problem (Figure 3.18). The result shows this extension of the forward
checking is less effective for this problem in comparison with the result without
the DVO (see Figure 3.13). The reason might come from that the default order to
assign the variables is the reversed breadth first order (RBFO) it might be a sort of
heuristic like the MRV, in the case of the FWL problem. The result does not show
the MRV is not effective, but it shows the RBFO is more suitable than the MRV for
the tree structure of the constraint graph unique to the FWL problem. As another
experiment for examining the effect of the pruning in the solving phase, I also
executed the system with the default sample layout without the pruning. However,

56

Table 3.4: Samples ofα∗

Alpha Value

αCB (check box) 0.98
αDLB (drop-down list box) 0.70
αS P (spinner) 0.90
αLB (list box) 0.75≤ αLB ≤ 0.85
αRBS (radio buttons) 0.95
αCBS (check boxes) 1.00
αS L (slider) 1.00
αB (button) 1.00

αAL (abbreviation label) 0.65
αCL (caption label) 1.00

αVA (vertical array) 1.00
αHA (horizontal array) 1.00
αT P (tab pages) 0.60
αT L (top labeling) 0.90
αLL (left labeling) 0.95

Figure 3.13: The relationship between the complexities of UI model and the aver-
age layout times (left), and the relationship between the complexities
and average desirability (right). The y axis is a time scale (msec.)
(left) or desirability (right) and the x axis is the models. The error
bars are the standard deviations of each model.

57

it did not stop for more than two hours because the domain size got too large to be
handled. That shows that pruning is effective in the system.

These experiments mentioned above are not comprehensive, and the scales of
the examples used for them are not enough for all applications and purposes of
GUI generations. For performing the comprehensive experiment, in addition, it
is also need to investigate how large scale problem or UI model is suitable for
investigating whether or not the system has effective enough. However, the result
shows that the system is enough for the scale of the default example model, and this
implementation indicates it is possible to automate the FWL, which is performed
by GUI developers by hands before.

3.5.2 Validity of formulation

The formulation method of FWL proposed in this thesis is not trivial. In early
phases of the research, the FWL problem was expressed with the variables corre-
sponding to widgets sizes and locations. This could be the easiest approach for for-
mulating the problem, but it could not offer enough speed of solving the problem.
That is because these variables expressing sizes and locations have large domains,
and the scale of the problem is enlarged. For the large scale problem, systematic
search algorithms take long time. Therefore, it was attempted to apply some local
search algorithms, which are known that it often can offer approximate solution
relatively faster, and the combination of the both of them [54]. However, it also
delivered inefficient result because the problem has largeplateau, which is a flat
part of its search space. In the current formulation, the container widgets function
effectively for reducing the scale of the problem.

3.5.3 Other considerations

For the usability of the FWL, the result of the FWL problem should be stable,
which means that layouts in different dialog sizes should be similar to each other.
The satiability of the solution of FCSP is discussed in existing studies for FCSP,
for example [55, 56], and these achievements are usable for the FWL problem as
well. However, the stability of the FWL is not exactly the same as them because the
similarity of widgets and their positioning should be considered. These similarities
are also fuzziness and subjective ones like the desirability of widgets discussed in
Section 1. It must be considered as future work.

How to decide the desirabilityα∗ is a point to be considered. Although, in this
thesis, the values are defined empirically (Table 3.4), it is difficult to define because
these values should be totally ordered as constraint satisfaction degrees of FCSP.
Since the framework of FCSP is introduced and the desirability can be defined with
fuzziness, pairwise comparison method can be utilized as a mean for defining the
desirability. I would like to put it as future work.

58

Figure 3.14: Relationship between the dialog box area, time (left) and desirability
(right) of the default example UI model. The y axis is a time scale
(msec.) (left) or desirability (right) and the x axis is the area of dialog
boxes (pixel2).

Figure 3.15: Relationship between the dialog box area, time (left) and desirability
(right) of the example UI model added one widget. The y axis is a
time scale (msec.) (left) or desirability (right) and the x axis is the
area of dialog boxes (pixel2).

59

Figure 3.16: Relationship between the dialog box area, time (left) and desirability
(right) of the example UI model added two widget. The y axis is a
time scale (msec.) (left) or desirability (right) and the x axis is the
area of dialog boxes (pixel2).

Figure 3.17: Relationship between the dialog box area, time (left) and desirability
(right) of the example UI model added three widget. The y axis is a
time scale (msec.) (left) or desirability (right) and the x axis is the
area of dialog boxes (pixel2).

60

Figure 3.18: Relationship between the complexities of UI model and both of the
average layout times (left) and the desirability (right), when using the
forward checking with the dynamic variable order. The y axis is a
time scale (msec.) (left) or desirability (right) and the x axis is the
models. The error bars are the standard deviations of each model.

3.6 Conclusion and Future Work

3.6.1 Conclusion

In this chapter, a new sort of layout problem accompanied by widget selection
was showed and named the flexible widget layout (FWL) problem. After that, the
problem was formulated as a fuzzy constraint satisfaction problem (FCSP), and a
layout system for the FWL was offered, which solves the problem in a practical
time, and generates dynamically GUIs.

The FWL is the automatic layout of GUI widgets based on the logical descrip-
tions, which requires considering how to decide which widgets should be used
and how to complete the layout in a practical time. In this chapter, the FWL was
handled as a combinatorial optimization problem. The widgets used in our imple-
mentation are a typical subset of ones in existing GUI toolkits; hence, the problem
addressed in this thesis is a small size one. Besides, the constraints in the prob-
lem are used for only parent-child compositions and desirability of widgets. These
limitations, however, are posed just in the current implementation, but not in our
approach itself. The widget selection before doing layout is general; it is not spe-
cific for model-based GUI generations, because GUI designers also need to select
widgets when they perform layouts by hand.

The first point of this chapter is that, for the challenge of UI, the achievements
in the FCSP domain of artificial intelligence field are utilized, where the proposal

61

method is one of its practical applications. The constraints of the FWL problem
include subjective ones involved with usability, sensitivity, etc; therefore, fuzziness
of constraints was introduced. The formulation of the problem was done in the
existing FCSP framework without not to be added any extension, and thus, existing
techniques can be usable. It means future achievements in the field of FCSP will
be also utilized for the FWL problem.

The second point of this chapter is that the layout method for the FWL is of-
fered as the layout system which can solve the layout in feasible time. The time-
sensitiveness of the problem is the remarkable character of this work, which is not
emphasized in the related studies, and some optimization techniques were tried and
evaluated. Some experiments have showed the size-sensitiveness of the problem,
and the uniqueness of the structure of its constraint graph when being solved as a
FCSP. To mention that the speed of layout is enough for the purpose requires more
experiments for researching the relation between the scale of problem, meaning the
complexity of layout, and the layout speed.

3.6.2 Future work

For advancing this work, it is necessary to add some layout rules based on GUI
guidelines, to evaluate the relation between problem scales and solving times, and
to consider other FCSP algorithms.

In this thesis, parental composition and widget desirability are used as layout
rules, but other rules can be added to the FWL. For example, constraints between
sibling widgets can be added for keeping the same types and states among them
for aesthetic, which does not exist in the current implementation. If the system
can available the semantic information between UI elements, it might be used for
alignment of corresponding widgets and reordering sibling widgets. As mentioned
as another consideration, how to determine the desirability of widgets is one of the
topics related to layout rules. In addition, as mentioned in Section 3.1.3, facility
layout problem will be usable for making the grouping and tree-structurizing of UI
elements before relating them to widget candidates.

Generally speaking, it is difficult to evaluate the effectiveness and usability of
UI systems, which include the layout system offered in this thesis. There are con-
sideration extracting GUI dialog boxes from existing applications and reconstruct-
ing them with the method introduced in this thesis. It might be able to evaluate the
availability of the layout system. In the perspective of usability, whether the result
of layout is useful or not might be evaluated using some examinees and question-
naires. There might be some evaluation techniques for GUI dialog box; therefore
they might be researched and used for it.

Algorithms used for the FWL in this thesis also need to be reconsidered more
for improving the layout system. In the current implementation, the forward check-
ing algorithm is used, which is systematic search algorithm, but the layout method
is not limited to this algorithm. As formulated as FCSP, the layout problem al-
lows using suboptimal results. Therefore, it can be considered to adopt some local

62

search (stochastic) algorithms such as the breakout [57], the local changes [58],
and the fuzzy GENET (FGENET) [59, 60] as alternatives other than the forward
checking. In addition, one of the hybrid algorithms of systematic and local search,
SRS [54] should be examined. When trying these algorithms, the tree structure of
the constraint graph of the problem might be considered. Moreover, for stabilizing
the result after re-layout accompanied with the size changing of the dialog box, the
stability of solutions of FCSP also needs to be considered. Because the stability of
the FWL requires considering some problem specific issues such as the similarity
among widgets, it is somewhat different from the simple one of FCSP.

63

64

Chapter 4

General Conclusion

4.1 Conclusion

This thesis is separated into the two parts: the part of the UI architecture, interface
client/logic server (ICLS), and the part of the GUI generation on the architecture,
flexible widget layout (FWL). As mentioned in Chapter 1, the objectives through
the whole of the thesis are the two: the first one is offering the architecture that
enables users to utilize computer-mediated services through their preferred UIs;
another is developing the UIs themselves that correspond to users’ preferences
for UIs. For the first objective, in Chapter 2, I mentioned the two challenges:
the adaptive UIs and the migratory UIs should be handled, and offered the UI
architecture handling them. For the second objective, in Chapter 3, I mentioned
the necessity of dealing with the layout problem occurs when GUIs are generated
from logical descriptions, and offered its solution.

The two topics of the studies are related to each other, but they are also inde-
pendent. I first started tackling the ICLS as a study of UI architecture, and in the
study, I noticed that the necessity of the consideration of UI generation method for
the ICLS. In this sense, the study of the FWL is the derivation of the first study.
However, the FWL is independent of the original study, because, the method pro-
posed in Chapter 3 is not limited to the use as an interface client. I summarize each
part of this thesis respectively and the relation of each other below.

The interface client/logic server is a UI architecture designed for flexible ex-
change of UIs of services and customizing, and consequently for enabling users to
utilize their preferred UIs. In Chapter 2, the users’ new demands for services were
raised, and adaptive and migratory UIs are handled as the solution for the demands.
The ICLS architecture was shown as a new solution, which not only supports the
migratory UIs but also offers the adaptive UIs. The points of the chapter are both
that the ICLS is supports the migratory and simultaneous UIs as its design; and that
the AIDL can express the meanings of interactions for describing service-specific
interactions. In addition, for showing the feasibility, I explain the two examples of
UIs based on the UI architecture, the interface clients. The study of the ICLS itself

65

shows nothing about how to generate actual UIs from the description of the AIDL,
and therefore, as the second topic, the next chapter was needed.

The flexible widget layout is a solution for the challenge how to generate user-
preferred UIs on the ICLS architecture, and one example of user preferred UIs. In
Chapter 3, a new sort of layout problem accompanied by widget selections was
presented and named the flexible widget layout (FWL) problem. The FWL is the
automatic layout of GUI widgets based on the logical descriptions, which requires
considering both how to decide which widgets should be used; and how to com-
plete the layout in a practical time. The points of the chapter are both that, for
the challenge of UI, the achievements in the FCSP domain of artificial intelligence
field are utilized; and that the layout method for the FWL is offered as the layout
system which can solve the layout problem in feasible time. By offering the FWL,
the efficiency of the AIDL and describing UIs with abstracted manner was shown,
and the feasibility of the ICLS was shown.

4.2 Future Work

This thesis has left plenty of room for the improvements of the proposal method. In
addition, as the study of the FWL is a derivation of the study of the ICLS, various
studies might be considered as the derivation of the two studies (Figure 4.1).

Figure 4.1: Derivations of this study as future work. Because this study concludes
some cross-cutting elements, there might exist various sorts of deriva-
tion studies.

66

The ultimate goal of the study of the ICLS is to establish the architecture and
its framework as an infrastructure of UIs. For that, it is necessary to evaluate its
availability, to advance the architecture, and to consider exploiting outcomes of
other work. There are three points to be evaluated: the feasibility of the ICLS,
the description capability of the AIDL, and the usability of services based on the
architecture. As other studies of derivation from the study of ICLS, I need to
consider generation schemes of UIs and the mechanism for choosing appropriate
UI components with given meanings. It is also necessary to consider exploiting
achievements of other studies and existing technologies.

The study of the FWL problem contains some other studies to be handled as
future work. As mentioned in Chapter 3, it is necessary to add other layout rules
based on GUI guidelines, to evaluate the relation between problem scales and solv-
ing times, and to consider other FCSP algorithms. In this thesis, adopted layout
rules and widgets are limited, but for fully implementing the specification of the
ICLS, additional widgets are needed. Algorithms used for the FWL in this thesis
also need to be reconsidered, because the FCSP of the FWL has specific character;
the FCSP is structured as a tree, which is not general in ordinal FCSPs. The study
of tree-structured FCSP might be another topic in the field of FCSP. In addition, it
also has possibility to be used as an intelligent layout manager in GUI toolkits.

67

68

Appendix A

Definition and Examples of the
AIDL

A.1 Definition of the AIDL with RELAX NG

1 <?xml version="1.0"?>
2 <grammar xmlns="http://relaxng.org/ns/structure/1.0"

3 xmlns:aidl="http://aiwww.main.ist.hokudai.ac.jp/~takty/aidlns

/">

4 <start>

5 <element name="aidl:field">

6 <interleave>

7 <ref name="dialog"/>

8 <optional>

9 <element name="knowledge">

10 <ref name="rdf"/>

11 </element>

12 </optional>

13 </interleave>

14 </element>

15 </start>

16 <define name="dialog">

17 <element name="aidl:dialog">

18 <ref name="id"/>

19 <attribute name="serviceID"/>

20 <attribute name="baseURI"/>

21 <interleave>

22 <optional>

23 <ref name="description"/>

24 </optional>

25 <optional>

26 <ref name="disabled"/>

69

27 </optional>

28 <zeroOrMore>

29 <ref name="presentation"/>

30 </zeroOrMore>

31 <zeroOrMore>

32 <ref name="selection"/>

33 </zeroOrMore>

34 <zeroOrMore>

35 <ref name="group"/>

36 </zeroOrMore>

37 <optional>

38 <element name="user">

39 <attribute name="id"/>

40 </element>

41 </optional>

42 </interleave>

43 </element>

44 </define>

45 <define name="group">

46 <element name="aidl:group">

47 <ref name="id"/>

48 <interleave>

49 <optional>

50 <ref name="description"/>

51 </optional>

52 <optional>

53 <ref name="disabled"/>

54 </optional>

55 <zeroOrMore>

56 <ref name="presentation"/>

57 </zeroOrMore>

58 <zeroOrMore>

59 <ref name="selection"/>

60 </zeroOrMore>

61 <zeroOrMore>

62 <ref name="group"/>

63 </zeroOrMore>

64 </interleave>

65 </element>

66 </define>

67 <define name="presentation">

68 <element name="aidl:presentation">

69 <ref name="id"/>

70 <interleave>

71 <choice>

72 <interleave>

70

73 <attribute name="aidl:caption"/>

74 <optional>

75 <attribute name="aidl:abbr"/>

76 </optional>

77 <optional>

78 <attribute name="aidl:message"/>

79 </optional>

80 </interleave>

81 <interleave>

82 <optional>

83 <attribute name="aidl:caption"/>

84 </optional>

85 <optional>

86 <attribute name="aidl:abbr"/>

87 </optional>

88 <attribute name="aidl:message"/>

89 </interleave>

90 </choice>

91 <optional>

92 <element name="knowledge">

93 <ref name="rdf"/>

94 </element>

95 </optional>

96 </interleave>

97 </element>

98 </define>

99 <define name="selection">

100 <element name="aidl:selection">

101 <ref name="id"/>

102 <interleave>

103 <optional>

104 <ref name="description"/>

105 </optional>

106 <optional>

107 <ref name="disabled"/>

108 </optional>

109 <optional>

110 <choice>

111 <element name="aidl:resources">

112 <choice>

113 <oneOrMore>

114 <element name="aidl:item">

115 <attribute name="aidl:uri"/>

116 <optional>

117 <ref name="description"/>

118 </optional>

71

119 </element>

120 </oneOrMore>

121 <attribute name="aidl:regex"/>

122 </choice>

123 </element>

124 <element name="aidl:numerics">

125 <choice>

126 <oneOrMore>

127 <element name="aidl:item">

128 <attribute name="aidl:num"/>

129 <empty/>

130 </element>

131 </oneOrMore>

132 <group>

133 <attribute name="aidl:min"/>

134 <attribute name="aidl:frequency"/>

135 <attribute name="aidl:max"/>

136 </group>

137 </choice>

138 </element>

139 <element name="aidl:strings">

140 <choice>

141 <oneOrMore>

142 <element name="aidl:item">

143 <attribute name="aidl:str"/>

144 <empty/>

145 </element>

146 </oneOrMore>

147 <attribute name="aidl:regex"/>

148 </choice>

149 </element>

150 </choice>

151 </optional>

152 <optional>

153 <element name="aidl:state">

154 <text/>

155 </element>

156 </optional>

157 </interleave>

158 </element>

159 </define>

160 <define name="disabled">

161 <element name="aidl:disabled">

162 <empty/>

163 </element>

164 </define>

72

165 <define name="description">

166 <element name="aidl:description">

167 <choice>

168 <group>

169 <attribute name="aidl:caption"/>

170 <optional>

171 <attribute name="aidl:abbr"/>

172 </optional>

173 <optional>

174 <attribute name="aidl:message"/>

175 </optional>

176 </group>

177 <group>

178 <optional>

179 <attribute name="aidl:caption"/>

180 </optional>

181 <optional>

182 <attribute name="aidl:abbr"/>

183 </optional>

184 <attribute name="aidl:message"/>

185 </group>

186 </choice>

187 </element>

188 </define>

189 <define name="id">

190 <optional>

191 <attribute name="aidl:id">

192 <text/>

193 </attribute>

194 </optional>

195 </define>

196 <define name="rdf">

197 <element>

198 <choice>

199 <nsName ns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

/>

200 <nsName ns="http://www.w3.org/2000/01/rdf-schema#"/>

201 </choice>

202 <zeroOrMore>

203 <choice>

204 <attribute>

205 <choice>

206 <nsName ns="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"/>

207 <nsName ns="http://www.w3.org/2000/01/rdf-schema#"

/>

73

208 </choice>

209 </attribute>

210 <text/>

211 <ref name="rdf"/>

212 </choice>

213 </zeroOrMore>

214 </element>

215 </define>

216 </grammar>

74

A.2 Examples of the AIDL

Desk lamp control service

The following XML document is a simple example of AIDL documents (descrip-
tions in AIDL) for the service of a desk lamp remote control. It expresses the UI
functions of the service; it has two functions: power state (on and off) selection,
and brightness (bright, normal, and dim) selection.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <aidl:aidl xmlns:aidl="http://aiwww.main.ist.hokudai.ac.jp/~

takty/aidlns/">

3 <aidl:session aidl:sessionID="http://aiwww.main.ist.hokudai.ac.

jp/~takty/desklamp/"/>

4 <aidl:dialog>

5 <aidl:description aidl:caption="Desk Lamp Service"/>

6 <aidl:presentation aidl:message="Let’s keep energy saving!!"/

>

7 <aidl:selection aidl:id="ps" aidl:meaning="http://aiwww.main.

ist.hokudai.ac.jp/~takty/aidl/LampPowerState">

8 <aidl:description aidl:caption="Power"/>

9 <aidl:state>http://www.example.com/Off</aidl:state>

10 <aidl:resources aidl:opposite="true">

11 <aidl:choice aidl:uri="http://www.example.com/On">

12 <aidl:description aidl:caption="On"/>

13 </aidl:choice>

14 <aidl:choice aidl:uri="http://www.example.com/Off">

15 <aidl:description aidl:caption="Off"/>

16 </aidl:choice>

17 </aidl:resources>

18 </aidl:selection>

19 <aidl:selection aidl:id="bs" aidl:meaning="http://aiwww.main.

ist.hokudai.ac.jp/~takty/aidl/Brightness">

20 <aidl:disabled/>

21 <aidl:description aidl:caption="Brightness"/>

22 <aidl:state>http://www.example.com/Normal</aidl:state>

23 <aidl:resources>

24 <aidl:choice aidl:uri="http://www.example.com/Dim">

25 <aidl:description aidl:caption="Dim"/>

26 </aidl:choice>

27 <aidl:choice aidl:uri="http://www.example.com/Normal">

28 <aidl:description aidl:caption="Normal"/>

29 </aidl:choice>

30 <aidl:choice aidl:uri="http://www.example.com/Bright">

31 <aidl:description aidl:caption="Bright"/>

32 </aidl:choice>

33 </aidl:resources>

75

34 </aidl:selection>

35 </aidl:dialog>

36 <aidl:knowledge>

37 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

38 <rdf:Description rdf:about="http://aiwww.main.ist.hokudai.ac.jp

/~takty/aidl/LampPowerState">

39 <rdfs:subClassOf rdf:resource="http://aiwww.main.ist.hokudai.ac

.jp/~takty/aidl/PowerState"/>

40 </rdf:Description>

41 </rdf:RDF>

42 </aidl:knowledge>

43 </aidl:aidl>

Audio set control service

The following XML document is another example of AIDL documents (descrip-
tions in AIDL) for the service of an audio system. It expresses the UI functions of
the service; it has two functions: power state (on and off) selection, function (CD
and radio) selection, volume (0 to 10) selection, frequency (76.0 to 92.0) selection
(but it is not seen in the source because the function is switched the CD mode), and
playback control (stop, play, pause, next, and previous).

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <aidl:aidl xmlns:aidl="http://aiwww.main.ist.hokudai.ac.jp/~

takty/aidlns/" aidl:baseURI="http://www.example.com/avc">

3 <aidl:dialog aidl:id="http://www.example.com/avc">

4 <aidl:description aidl:caption="Stereo"/>

5 <aidl:selection aidl:meaning="http://aiwww.main.ist.

hokudai.ac.jp/~takty/aidl/PowerState">

6 <aidl:description aidl:caption="Power"/>

7 <aidl:state>http://www.example.com/Off</aidl:state>

8 <aidl:resources aidl:opposite="true">

9 <aidl:choice aidl:uri="http://www.example.com/On">

10 <aidl:description aidl:caption="On"/>

11 </aidl:choice>

12 <aidl:choice aidl:uri="http://www.example.com/Off">

13 <aidl:description aidl:caption="Off"/>

14 </aidl:choice>

15 </aidl:resources>

16 </aidl:selection>

17 <aidl:selection aidl:id="http://www.example.com/avc#s2">

18 <aidl:description aidl:caption="Volume"/>

19 <aidl:state>5</aidl:state>

20 <aidl:numerics aidl:frequency="1" aidl:id="0" aidl:max

="10" aidl:min="0">

76

21 <aidl:mapping aidl:type="left_to_right"/>

22 </aidl:numerics>

23 </aidl:selection>

24 <aidl:selection aidl:id="http://www.example.com/avc#s3">

25 <aidl:description aidl:caption="Function"/>

26 <aidl:state>http://www.example.com/avc#cd</aidl:state>

27 <aidl:resources aidl:id="1">

28 <aidl:choice aidl:uri="http://www.example.com/avc#

radio">

29 <aidl:description aidl:caption="Radio"/>

30 </aidl:choice>

31 <aidl:choice aidl:uri="http://www.example.com/avc#

cd">

32 <aidl:description aidl:caption="CD"/>

33 </aidl:choice>

34 </aidl:resources>

35 </aidl:selection>

36 <aidl:group aidl:id="http://www.example.com/avc#g2">

37 <aidl:description aidl:caption="CD"/>

38 <aidl:selection aidl:id="http://www.example.com/avc#s5

" aidl:meaning="http://aiwww.main.ist.hokudai.ac.

jp/~takty/aidl/Playback">

39 <aidl:state>http://www.example.com/Stop</aidl:state

>

40 <aidl:resources aidl:id="3">

41 <aidl:choice aidl:uri="http://www.example.com/

Stop">

42 <aidl:description aidl:caption="Stop"/>

43 </aidl:choice>

44 <aidl:choice aidl:uri="http://www.example.com/

Play">

45 <aidl:description aidl:caption="Play"/>

46 </aidl:choice>

47 <aidl:choice aidl:uri="http://www.example.com/

Pause">

48 <aidl:description aidl:caption="Pause"/>

49 </aidl:choice>

50 </aidl:resources>

51 </aidl:selection>

52 <aidl:selection aidl:id="http://www.example.com/avc#c1

">

53 <aidl:description aidl:caption="Next"/>

54 </aidl:selection>

55 <aidl:selection aidl:id="http://www.example.com/avc#c2

">

56 <aidl:description aidl:caption="Previous"/>

77

57 </aidl:selection>

58 </aidl:group>

59 </aidl:dialog>

60 </aidl:aidl>

78

Appendix B

Summary of the ICLS library

The ICLS library consists of the following four packages:jp.ac.
hokudai.ist.main.aiwww.aidl, jp.ac.hokudai.ist.main.aiwww.core,
jp.ac.hokudai.ist.main.aiwww.net, and jp.ac.hokudai.ist.main.
aiwww.util.

B.1 Package aidl

The packageac.hokudai.ist.main.aiwww.aidl contains interfaces, classes,
and enums which represent the elements of AIDL and some facilities.

Interface summary

Class name Description

AidlDocumentListener The listener interface for receiving events invoked
by an AIDL document.

GroupListener The listener interface for receiving events invoked
by a group element.

KnowledgeFactory The interface of knowledge base factory.
MeaningHierarchy The interface for expressing a UI meaning hierar-

chy.
SelectionListener The listener interface for receiving events invoked

by a selection element.

Class summary

Class name Description

AidlDocument The class for representing an AIDL document.

79

AidlElement This class is the super class of the all classes of
AIDL elements.

Choice The abstract class for representing a choice.
ChoiceSet The abstract class for a set of choices.
DescribableInteraction The class for representing a describable interac-

tion element.
Description The class for representing a description element.
Dialog The class for representing a dialog element.
Group The class for representing a group element.
Interaction The abstract class for representing a interaction el-

ement.
Knowledge The class for representing a knowledge base of an

AIDL document.
Mapping The class for representing a choice mapping.
NumericSet The class for representing a numeric choice set.
Presentation The class for representing a presentation element.
ResourceSet The class for representing a resource choice set.
Selection The class for representing a selection element.
SelectionAdapter The adapter of a selection listener, which offers an

empty implementation of SelectionListener.
StringSet The class for representing a string choice set.

Enum summary

Class name Description

Choice.Type The enum for representing the type of a choice.
ChoiceSet.QualifierType The enum for representing the constraint of a

choice set.
Group.Ordering The enum for representing the order of child ele-

ments of a group element.
Mapping.Type The enum for representing the type of a mapping

of choices.

B.2 Package core

The packageac.hokudai.ist.main.aiwww.core contains interfaces and
classes which represent the ICLS framework, or the entities of the architecture.

Interface summary

Class name Description

80

InterfaceClient The interface for representing an interface client.
LogicServer The interface for representing a logic server.
LogicServerOutlet The interface for representing an outlet, which

waits for connections from clients and connects to
servers.

PaneClientListener The listener interface for receiving events for
clients invoked by a pane.

PaneServerListener The listener interface for receiving events for
servers invoked by a pane.

Class summary

Class name Description

InterfaceClientProxy The proxy class of an interface client.
LogicServerProxy The proxy class of a logic server.
Pane The class for representing an interaction pane.
PaneClientAdapter The listener adapter for handling events for clients

by pane.
Proxy The class for handling functions as proxy of both

interface clients and logic servers.
ServiceDetector The class of a service detector.
ServiceDetector

.ServiceInformation
The class for storing service information which is
found by a service detector.

ServiceProvider The class for representing a service provider.
SocketLogicServerOutlet The class of a socket outlet for logic servers.
TemplateNode The class for representing a node of UI meaning

templates.
TemplateNode

.MatchResult
The class for representing the result of UI meaning
template matching.

B.3 Package net

The packageac.hokudai.ist.main.aiwww.net contains interfaces and classes
which represent the extended sockets of networking, and are independent of the
ICLS.

Interface summary

Class name Description

MessageListener The listener interface for receiving message ar-
riving and disconnecting events.

81

SimpleServerSocketListener The listener interface of connection to server
sockets which are waiting for connections.

Class summary

Class name Description

MessageSocket Sockets for handing string messages.
SimpleServerSocket A simple wrapper of a server socket.
SimpleSocket A simple wrapper of a socket, which handles mul-

tiple lines of strings.

B.4 Package util

The packageac.hokudai.ist.main.aiwww.util contains interfaces, classes,
and enums which represent the elements of AIDL and some facilities.

Class summary

Class name Description

AidlUtilities The utility class for being used when AIDL docu-
ments are generated.

82

Acknowledgements

My deepest appreciation goes to my supervisor, Associate Professor Hidetoshi
Nonaka in the laboratory of intelligent information systems (Hokkaido University)
for his continuous guidance, valuable advice, and helpful discussions. His com-
ments and suggestions were of inestimable value for my study for six and a half
years. I have been impressed in his ideas and the way of thinking, and I would not
study on the human computer interaction without his kind advice. Special thanks
go to Professor Masaaki Miyakoshi in the laboratory of mathematical science for
computing; Professor Mineichi Kudo in the laboratory for pattern recognition and
machine learning; and Masahito Kurihara in the formative system engineering lab-
oratory (Hokkaido University). Their comments and advices made enormous con-
tribution to my thesis. Especially, Professor Kurihara was my supervisor when I
wrote my master thesis before, and now when I wrote the doctoral thesis, he also
gave me kind advice on the artificial intelligence.

I am grateful to thank Assistant Professor Yasuhiro Sudo (Kanagawa Institute
of Technology) for his kind advice on the field of constraint satisfaction problems
(CSP). The flexible layout problem is based on his research field CSP, and discus-
sion with him has inspired me. Without his help, I can not only study the problem
but also I would not write the last half of this thesis. Moreover, it was him who
told me how wonderful soup curry was. I also thank Assistant Professor Takeshi
Yoshikawa in the laboratory of intelligent information systems (Hokkaido Univer-
sity) for his advice in the same period of time. His opinions were very useful for
me especially when I was trying to formulate the layout problem mentioned in
Chapter 3. Without discussions with him, I would have not achieved it.

My gratitude is to all the former and present members of the laboratory of
intelligent information systems in Hokkaido University. Although I cannot write
down the name of every member, I have spent a great time with the colleagues.
Active discussions with them, talks on coffee and alcohol, and kind advices from
them are the greatest help for me. Furthermore, I would like to thank all the people
who gave me useful comments on the research in workshops, symposiums, and
conferences for discussions, cooperation, and friendship.

Finally, I would also like to express my gratitude to my parents, brother, and
grandparents for their moral support, patience, and warm encouragements. In ad-
dition, I cannot forget to be grateful for my dog Pal, who always brings relief for
me with his cute face and nice brown fur.

83

This thesis is partially supported by the program of the cultivating young re-
searchers of the Hokkaido University global COE “the formation of a center for
next generation information technology that supports knowledge creation”.

84

Bibliography

[1] Ken-ichi Okada, Shogo Nishida, Hideaki Kuzuoka, Mie Nakatani, and
Hidekazu Shiozawa.Human computer interaction. Ohmsha, 2002. (in
Japanese).

[2] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland,
and Tom Carey.Human-Computer Interaction. ADDISON-WESLEY PUB-
LISHING COMPANY, 1994.

[3] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing appli-
cations. InProceedings of the 1st IEEE Workshop on Mobile Computing Sys-
tems and Applications (WMCSA1994), pages 85–90, Santa Cruz, CA, USA,
1994. IEEE.

[4] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A context-based infras-
tructure for smart environments. Technical Report GIT-GVU-99-39, Georgia
Institute of Technology, 1999.

[5] Mark Weiser. The computer for the 21st century.Scientific American,
265(3):94–104, 1991.

[6] Renata Bandelloni and Fabio Paternò. Flexible interface migration. InPro-
ceedings of the 2004 International Conference on Intelligent User Interfaces
(IUI 2004), pages 148–155, Funchal, Madeira, Portugal, 2004. ACM.

[7] Takuto Yanagida and Hidetoshi Nonaka. Architecture for migratory adaptive
user interfaces. InProceedings of the IEEE 8th International Conference on
Computer and Information Technology (CIT 2008), pages 450–455, Sydney,
Australia, July 2008. IEEE.

[8] Takuto Yanagida and Hidetoshi Nonaka. Interaction description with service-
specific meanings. InProceedings of the 5th International Conference on
Cybernetics and Information Technologies, Systems and Applications (CITSA
2008), pages 185–188, Orlando, FL, USA, July 2008. IIIS.

[9] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying model-
based techniques to the development of UIs for mobile computers. InPro-
ceedings of the 2001 International Conference on Intelligent User Interfaces
(IUI 2001), pages 69–76, Santa Fe, NM, USA, 2001. ACM.

85

[10] Jean M. Vanderdonckt and François Bodart. Encapsulating knowledge for
intelligent automatic interaction objects selection. InProceedings of CHI
’93, pages 424–429, Amsterdam, The Netherlands, 1993. ACM.

[11] Renata Bandelloni, Giulio Mori, and Fabio Paternò. Dynamic generation
of migratory interfaces. InProceedings of Mobile HCI 2005, pages 83–90,
Salzburg, Austria, 2005. ACM.

[12] Stina Nylander, Markus Bylund, and Annika Waern. The ubiquitous
interactor–device independent access to mobile services. InProceedings of
the 4th International Conference on Computer-Aided Design of User Inter-
faces (CADUI 2004), pages 274–287, Funchal, Portugal, 2004. Kluwer.

[13] Stina Nylander, Markus Bylund, and Annika Waern. Ubiquitous service ac-
cess through adapted user interfaces on multiple devices.Personal and Ubiq-
uitous Computing, 9(3):123–133, 2005.

[14] Stina Nylander. Semi-automatic generation of device adapted user interfaces.
In Proceedings of the 18th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST 2005) (doctoral symposium), page 4, Seattle,
WA, USA, 2005. ACM.

[15] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K.
Harris, Roni Rosenfeld, and Mathilde Pignol. Generating remote control in-
terfaces for complex appliances. InProceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology (UIST ’02), pages
161–170, Paris, France, 2002. ACM.

[16] Jeffrey Nichols, Brad A. Myers, Kevin Litwack, Michael Higgins, Joseph
Hughes, and Thomas K. Harris. Describing appliance user interfaces ab-
stractly with xml. InDeveloping User Interfaces with XML: Advances on
User Interface Description Languages, 2004.

[17] Jeffrey Nichols, Brad A. Myers, and Kevin Litwack. Improving automatic in-
terface generation with smart templates. InProceedings of the 2004 Interna-
tional Conference on Intelligent User Interfaces (IUI 2004), pages 286–288,
Funchal, Madeira, Portugal, 2004. ACM.

[18] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, and Jonathan E. Shuster. UIML: An appliance-independent XML
user interface language. InProceedings of the 8th International World Wide
Web Conference, pages 1695–1708, Toronto, Canada, 1999. Elsevier Science.

[19] Krishna A. Bharat and Luca Cardelli. Migratory applications. In Jan Vitek
and Christian Tschudin, editors,Proceedings of the 8th Annual ACM Sympo-
sium on User Interface Software and Technology (UIST ’95), volume 1222,
pages 131–148. Springer-Verlag: Heidelberg, Germany, 1995.

86

[20] Dan R. Olsen, Sean Jefferies, S. Travis Nielsen, William Moyes, and Paul
Fredrickson. Cross-modal interaction using XWeb. InProceedings of the
13th Annual ACM Symposium on User Interface Software and Technology
(UIST 2000), pages 191–200, San Diego, CA, USA, 2000. ACM.

[21] Todd D. Hodes and Randy H. Katz. A document-based framework for in-
ternet application control. InProceedings of the 2nd Conference on USENIX
Symposium on Internet Technologies and Systems, pages 59–70, Boulder, CO,
USA, 1999. USENIX Association.

[22] Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd. ICrafter: A service framework for ubiquitous computing environ-
ments.Lecture Notes in Computer Science, 2201:56–74, 2001.

[23] Google. Gmail, 2008. Available athttp://mail.google.com/.

[24] James Clark, Makoto Murata, and OASIS. RELAX NG, 2001. Available at
http://www.relaxng.org/.

[25] Eric Miller, Ralph Swick, and Dan Brickley. Resource description framework
(RDF), 2004. Available athttp://www.w3.org/RDF/.

[26] Grigoris Antoniou and Frank van Harmelen.A Semantic Web Primer. The
MIT Press, 2004.

[27] Masahide Kanzaki.An Introduction to RDF/OWL for Semantic Web. Morikita
Shuppan Co., Ltd., 2004. (in Japanese).

[28] Eric Miller. Digital Libraries and the Semantic Web, 2001. Available at
http://www.w3.org/2001/09/06-ecdl/.

[29] Hewlett-Packard Development Company, L.P. Jena - a semantic web frame-
work for java. Available athttp://jena.sourceforge.net/.

[30] Sun Microsystems. FreeTTS 1.2, 2005. Available athttp://freetts.
sourceforge.net/.

[31] Sun Microsystems, Inc. Java speech API, 2008. Available athttp://java.
sun.com/products/java-media/speech/.

[32] Simon Lok and Steven Feiner. A survey of automated layout techniques for
information presentations. InProceedings of the 1st International Symposium
on Smart Graphics, pages 61–68, Hawthorne, NY, USA, 2001. ACM.

[33] Zsófia Ruttkay. Fuzzy constraint satisfaction. InProceedings of the 3rd IEEE
Conference on Fuzzy Systems, pages 1263–1268, Orlando, FL, USA, 1994.
IEEE.

87

[34] Murielle Florins and Jean Vanderdonckt. Graceful degradation of user in-
terfaces as a design method for multiplatform systems. InProceedings of
the 2004 International Conference on Intelligent User Interfaces (IUI 2004),
pages 140–147, Madeira, Funchal, Portugal, 2004. ACM Press.

[35] Murielle Florins, Francisco Montero Simarro, Jean Vanderdonckt, and Ben-
jamin Michotte. Splitting rules for graceful degradation of user interfaces. In
Proceedings of the 8th International Working Conference on Advanced Visual
Interfaces (AVI 2006), pages 59–66, Venice, Italy, 2006. ACM Press.

[36] Benoît Collignon, Jean Vanderdonckt, and Gaëlle Calvary. An intelligent
editor for multi-presentation user interfaces. InProceedings of the 23rd An-
nual ACM Symposium on Applied Computing (SAC 2008), pages 1634–1641,
Fortaleza, Ceará, Brazil, 2008. ACM Press.

[37] S. P. Singh and R. R. K. Sharma. A review of different approaches to the facil-
ity layout problems.The International Journal of Advanced Manufacturing
Technology, 30:425–433, 2006.

[38] Russell D. Meller and Kai-Yin Gau. The facility layout problem: Recent
and emerging trends and perspectives.Journal of Manufacturing Systems,
15:351–366, 1996.

[39] S. K. Peer and Dinesh K. Sharma. Human-computer interaction design with
multi-goal facilities layout model.Computer and Mathematics with Applica-
tions, 56:2164–2174, 2008.

[40] Hitoshi Kitazawa. Overview of the LSI layout CAD algorithms and their
applications to image processing. InTechnical Report of the Institute of Elec-
tronics, Information and Communication Engineers VLD2006–38, volume
106, pages 25–30, 2006. (in Japanese).

[41] Sun Microsystems, Inc. JDK 6 swing (java foundation classes),
2005. Available athttp://java.sun.com/javase/6/docs/technotes/
guides/swing/index.html.

[42] Microsoft Corporation. Windows forms. Available athttp://msdn2.
microsoft.com/en-us/netframework/aa497342.aspx.

[43] Inc. Embarcadero Technologies. Codegear home page. Available athttp:
//www.codegear.com/.

[44] The GTK+ Team. The GTK+ project. Available athttp://www.gtk.org/.

[45] Trolltech ASA. Qt. Available athttp://trolltech.com/products/qt/.

[46] Apple Inc. Apple human interface guidelines, 6 2008. Available
at http://developer.apple.com/documentation/UserExperience/
Conceptual/AppleHIGuidelines/OSXHIGuidelines.pdf.

88

[47] Susan L. Fowler.GUI Design Handbook. Mcgraw-Hill Companies, Inc.,
1997.

[48] Jenifer Tidwell.Designing Interfaces. O’Reilly Media, Inc., 2005.

[49] Fahiem Bacchus and Peter van Beek. On the conversion between non-binary
and binary constraint satisfaction problems. InProceedings of 15th National
Conference on Artificial Intelligence (AAAI-98), pages 311–318, Madison,
WI, USA, 1998. AAAI Press/The MIT Press.

[50] Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satis-
faction problems. InProceedings of the 16th national conference on artificial
intelligence and the 11th conference on innovative applications of artificial
intelligence (AAAI ’99/IAAI ’99), pages 163–168, Menlo Park, CA, USA,
1999. American Association for Artificial Intelligence.

[51] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems.Artificial Intelligence, 14(3):263–313,
1980.

[52] Pedro Meseguer and Javier Larrosa. Solving fuzzy constraint satisfaction
problems. InProceedings of the 6th IEEE International Conference on Fuzzy
Systems, volume 3, pages 1233–1238, Barcelona, Spain, 1997. IEEE.

[53] Fahiem Bacchus and Paul van Run. Dynamic variable ordering in CSPs. In
Proceedings of the 1st International Conference on Principles and Practice
of Constraint Programming (CP ’95), pages 258–275, Cassis, France, 1995.
Springer.

[54] Yasuhiro Sudo and Masahito Kurihara. Spread-repair-shrink: A hybrid al-
gorithm for solving fuzzy constraint satisfaction problems. InProceedings
of the 2006 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE
2006), pages 2127–2133, Vancouver, BC, Canada, 2006. IEEE.

[55] Yasuhiro Sudo, Masahito Kurihara, and Takuto Yanagida. Keeping the sta-
bility of solutions in dynamic fuzzy CSPs. InProceedings of the 2008 IEEE
Conference on Soft Computing in Industrial Applications (SMCia/08), pages
382–386, Muroran, Japan, 2008. IEEE.

[56] Yasuhiro Sudo, Masahito Kurihara, and Takuto Yanagida. Keeping the sta-
bility of solutions to dynamic fuzzy CSPs. InProceedings of the 2008 IEEE
International Conference on Systems, Man and Cybernetics (SMC 2008), Sin-
gapore, 2008. IEEE.

[57] Paul Morris. The breakout method for escaping from local minima. InPro-
ceedings of the 11th National Conference on Artificial Intelligence (AAAI-
93), pages 40–45, Washington, DC, USA, 1993. AAAI Press/The MIT Press.

89

[58] Gérard Verfaillie and Thomas Schiex. Solution reuse in dynamic constraint
satisfaction problems. InProceedings of the 12th National Conference on
Artificial Intelligence, pages 307–312, Seattle, WA, USA, 1994. AAAI Press.

[59] Edward P. K. Tsang and Chang J. Wang. A generic neural network approach
for constraint satisfaction problems. In J. G. Taylor, editor,Proceedings of the
2nd British Neural Network Society Meeting (Neural Network Applications),
pages 12–22, London, UK, 1992. Springer-Verlag.

[60] Jason H. Y. Wong and Ho fung Leung. Extending GENET to solve fuzzy
constraint satisfaction problems. InProceedings of the 15th national/10th
conference on Artificial intelligence/Innovative applications of artificial intel-
ligence (AAAI ’98/IAAI ’98), pages 380–385, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

90

