

A tool for analyzing and visualizing constraint satisfaction problems

Takuto Yanagida
†
, Masahito Kurihara

‡
, and Hidetoshi Nonaka

†

Graduate School of Information Science and Technology

Hokkaido University, Sapporo 060-0814, Japan

E-mail:
†
{takty, nonaka}@main.ist.hokudai.ac.jp,

‡
kurihara@ist.hokudai.ac.jp

Abstract Constraint satisfaction problems (CSPs) and one of its extensions fuzzy CSPs (FCSPs) are simple models for formulating

problems that exist in the real world. There are a lot of general-purpose solvers for FCSPs, and once we formulate a problem as an FCSP and

then can have one of the solvers solve it. This formulation is however another problem because it is a process that entails highly abstracting

the problem, it is not often determined uniquely, and it governs the efficiency of solving the problem. The authors consider that it improves

this situation to increasing the visibility of solvers’ behavior in order to adjusting models developed once. In this paper, the authors show

their ongoing work for developing a tool for analyzing and visualizing FCSPs, which provides two- and three-dimensional views of FCSPs

and shows the behavior of solvers with animations.

1. INTRODUCTION

Constraint satisfaction problems (CSPs) are a simple model for

formulating problems that exist in the real world, and they have

been studied in the context of the artificial intelligence. However,

there are still a lot of problems that classical, rigid (crisp) CSPs are

hard to handle. Therefore, fuzzy CSPs (FCSPs) are proposed as an

extension of the crisp CSP, where fuzzy relations represent

constraints [1]. It accommodates suboptimal solutions for

providing useful information for handling the problems.

Since there are a lot of general-purpose solvers for FCSPs, once

we formulate a problem as an FCSP, and then we can have one of

the solvers solve it. This formulation is however another problem

because it is a process that entails highly abstracting the problem, it

is not often determined uniquely, and it governs the efficiency of

solving the problem. That is, the formulation is a problem left to

humans, and can be one of the research topics including ours [2].

We consider that it improves the situation of formulations to

increasing the visibility of solvers’ behavior in order to adjusting

models developed once. When we utilized the framework of FCSPs

as a tool for solving a problem, we were often confused because we

were not able to comprehend behavior of solvers. Why does not a

solver output a solution? Why do not they stop? What is the

bottleneck of the modeled problem?

We are now investigating related work for improving this

situation. Sadaoui et al. have proposed a tool [3], which enables us

to generate and solving CSPs. JCLEditor is another graphical tool

for developing and solving CSPs and soft CSPs including FCSPs

[4]. However, both of them do not provide any functions for

helping comprehend the behavior of solvers.

In this paper, we show our ongoing work for developing a tool

for analyzing and visualizing FCSPs (Fig. 1). This tool provides the

two- and three-dimensional views of constraint graphs (an

representation of FCSPs), and it enables users to understand the

behavior of solvers with animation intuitively, detect the looping

behavior of solvers, and debug in similar way of integrated

development environments (IDEs) for programming languages.

2. CONSTRAINT SATISFACTION PROBLEMS

An FCSP consists of the following components: a finite set of

variables X = xi i=1
m , domains D = Di i=1

m associated with the

each variable, and constraints C = ck k=1
r among the variables.

Constraint ck denotes a fuzzy relation μRk on a subset of the

variables, which is called the scope of μRk . A constraint has its

membership function, the membership value of which is computed

by an assignment to the variables in the scope of the constraint.

This value is called the degree of satisfaction, and it expresses how

the assignments satisfy the constraint. The degree of satisfaction of

the whole FCSP is defined as the minimum of the degrees. To solve

an FCSP is equivalent to find the assignment accompanied by the

best satisfaction degree of the problem.

In general, the structure of FCSPs can be represented by a

constraint graph, where nodes and edges correspond to variables

and constraints. Another form of the graph is a dual constraint

graph, which represents constraints as nodes and nonempty sets of

Fig. 1 A screenshot of the main window of the tool.

variables as edges. In this paper instead, we represent FCSPs with

variable nodes (rounds), constraint nodes (squares), and edges of

their connections (Fig. 1, 2). It can express states of variables and

constraints at once by changing the appearance of the nodes.

3. A TOOL FOR FCSPS

We implemented a tool in Java based on our CSP library Stlics

(Fig. 1). The tool offers the following 10 solvers implemented in

the library: Breakout [5], SRS 3 revised for crisp problems, the

forward checking [6], GENET, and the local changes (for crisp

problems), and the flexible local changes [7], the fuzzy Breakout,

the fuzzy forward checking, fuzzy GENET [8], and SRS 3 [9] (for

fuzzy problems). Users can load arbitrary problems that the Stlics

library outputs, apply above solvers, and obtain a solution.

The tool provides two types of view of constraint graphs: the

two-dimensional (2D) view and three-dimensional (3D) view (Fig.

2). In order to make appropriate layouts of graphs, we adopted the

modified spring model [10] and its extension for the 3D view. The

equations for calculating the forces of springs are as follows:

fa d = ca
d2

k
 , fr d = −cr

k2

d
,

where fa and fr means attractive and repulsive forces among

nodes, d and k are the actual and the ideal distance between two

nodes, and ca and cr are constants that decides the strength of

those forces respectively. fa takes effect between connected nodes,

variable and constraint nodes, and fr does among other nodes. In

the 3D view, nodes are mapped on the surface of a virtual sphere.

Users can customize the constants of the forces and the radius of

the sphere, and can rotate and scale the views.

Showing the behavior of solvers is another important function

provided by our tool, which flashes each variable node when a

solver assign values to the corresponding variable, and it can

change the color of variable nodes and constraint nodes in response

to the change of assignment counts and the degree of satisfaction

respectively. To analyze FCSPs, users can have the tool detect

loops of assignments, which is a phenomenon that a solver iterates

trying to assign the same values to the same variables. In addition,

users can put break points on any variables to pause solvers when

they assign values to the variables, and can execute solvers

gradually, which is called step over in IDEs.

4. CONCLUSION

We showed our ongoing work to develop a tool for analyzing

and visualizing FCSPs, which enables users who utilize FCSPs as a

tool to comprehend the structure of FCSPs and the behavior of

solvers intuitively. The features of our tool are the 3D view of

constraint graphs and the loop detection function. In addition, users

can debug FCSP models with operations like ones given some

IDEs for programming languages.

We need to implement functions to generate FCSP models from

scratch and to edit them. So far, instead, users have to write a

program of a model in Java, to output the model as a text file, and

to have the tool load it. We are planning to add the functionality of

editing to the tool and to make it comprehensive development tool

for FCSPs. In addition, we are going to show the effectiveness of

the tool by using it for improving our previous study [2].

REFERENCES

[1] Z. Ruttkay, ―Fuzzy constraint satisfaction,‖ in Proceedings of
the 3rd IEEE Conference on Fuzzy Systems, vol. 2. Orlando,
FL, USA: IEEE, 1994, pp. 1263–1268.

[2] T. Yanagida and H. Nonaka, ―Flexible widget layout
formulated as fuzzy constraint satisfaction problem,‖ in
Proceedings of the 1st KES International Symposium on
Intelligent Decision Technologies (KES IDT 2009). Himeji,
Japan: Springer, April 2009, pp. 73–83.

[3] S. Sadaoui, M. Mouhoub, and X. Li, ―An OCL-based CSP
specification and solving tool,‖ New Challenges in Applied
Intelligence Technologies, vol. 134, pp. 235–244, 2008.

[4] L. Grangier, ―JCLEditor—A graphical CSP solver based on
JCL,‖ 2005. Available at http://liawww.epfl.ch/JCL/.

[5] P. Morris, ―The breakout method for escaping from local
minima,‖ in Proceedings of the 11th National Conference on
Artificial Intelligence (AAAI-93). Washington, DC, USA:
AAAI Press/The MIT Press, 1993, pp. 40–45.

[6] R. M. Haralick and G. L. Elliott, ―Increasing tree search
efficiency for constraint satisfaction problems,‖ Artificial
Intelligence, vol. 14, no. 3, pp. 263–313, 1980.

[7] I. Miguel and Q. Shen, ―Extending FCSP to Support
Dynamically Changing Problems,‖ in Proceedings of the 8th
IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE '99). Seoul, Korea: IEEE, 1999, pp. 1615–1620.

[8] J. H. Y. Wong and H. Leung, ―Extending GENET to solve
fuzzy constraint satisfaction problems,‖ in Proceedings of the
15th national/10th conference on Artificial
intelligence/Innovative applications of artificial intelligence
(AAAI ’98/IAAI ’98). Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1998, pp. 380–385.

[9] Y. Sudo and M. Kurihara, ―Spread-repair-shrink: a hybrid
algorithm for solving fuzzy constraint satisfaction problems,‖
in Proceedings of the 2006 IEEE World Congress on
Computational Intelligence/the 2006 IEEE International
Conference on Fuzzy Systems (WCCI 2006/FUZZ-IEEE
2006). Vancouver, BC, Canada: IEEE, 2006, pp. 2127–2133.

[10] T. M. J. Fruchterman and E. M. Reingold, ―Graph drawing by
force-directed placement,‖ Software—practice and
experience, vol. 21, no. 11, pp. 1129–1164, 1991.

(a)

(b)

Fig. 2 the two-dimensional (2D) view (a) and the three-dimensional

(3D) view (b) of a constraint graph.

