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Abstract  Constraint satisfaction problems (CSPs) and one of its extensions fuzzy CSPs (FCSPs) are simple models for formulating 

problems that exist in the real world. There are a lot of general-purpose solvers for FCSPs, and once we formulate a problem as an FCSP and 

then can have one of the solvers solve it. This formulation is however another problem because it is a process that entails highly abstracting 

the problem, it is not often determined uniquely, and it governs the efficiency of solving the problem. The authors consider that it improves 

this situation to increasing the visibility of solvers’ behavior in order to adjusting models developed once. In this paper, the authors show 

their ongoing work for developing a tool for analyzing and visualizing FCSPs, which provides two- and three-dimensional views of FCSPs 

and shows the behavior of solvers with animations. 

 

1. INTRODUCTION 

Constraint satisfaction problems (CSPs) are a simple model for 

formulating problems that exist in the real world, and they have 

been studied in the context of the artificial intelligence. However, 

there are still a lot of problems that classical, rigid (crisp) CSPs are 

hard to handle. Therefore, fuzzy CSPs (FCSPs) are proposed as an 

extension of the crisp CSP, where fuzzy relations represent 

constraints [1]. It accommodates suboptimal solutions for 

providing useful information for handling the problems. 

Since there are a lot of general-purpose solvers for FCSPs, once 

we formulate a problem as an FCSP, and then we can have one of 

the solvers solve it. This formulation is however another problem 

because it is a process that entails highly abstracting the problem, it 

is not often determined uniquely, and it governs the efficiency of 

solving the problem. That is, the formulation is a problem left to 

humans, and can be one of the research topics including ours [2]. 

We consider that it improves the situation of formulations to 

increasing the visibility of solvers’ behavior in order to adjusting 

models developed once. When we utilized the framework of FCSPs 

as a tool for solving a problem, we were often confused because we 

were not able to comprehend behavior of solvers. Why does not a 

solver output a solution? Why do not they stop? What is the 

bottleneck of the modeled problem? 

We are now investigating related work for improving this 

situation. Sadaoui et al. have proposed a tool [3], which enables us 

to generate and solving CSPs. JCLEditor is another graphical tool 

for developing and solving CSPs and soft CSPs including FCSPs 

[4]. However, both of them do not provide any functions for 

helping comprehend the behavior of solvers. 

In this paper, we show our ongoing work for developing a tool 

for analyzing and visualizing FCSPs (Fig. 1). This tool provides the 

two- and three-dimensional views of constraint graphs (an 

representation of FCSPs), and it enables users to understand the 

behavior of solvers with animation intuitively, detect the looping 

behavior of solvers, and debug in similar way of integrated 

development environments (IDEs) for programming languages. 

2. CONSTRAINT SATISFACTION PROBLEMS 

An FCSP consists of the following components: a finite set of 

variables X =  xi i=1
m , domains D =  Di i=1

m  associated with the 

each variable, and constraints C =  ck k=1
r  among the variables. 

Constraint ck  denotes a fuzzy relation μRk  on a subset of the 

variables, which is called the scope of μRk . A constraint has its 

membership function, the membership value of which is computed 

by an assignment to the variables in the scope of the constraint. 

This value is called the degree of satisfaction, and it expresses how 

the assignments satisfy the constraint. The degree of satisfaction of 

the whole FCSP is defined as the minimum of the degrees. To solve 

an FCSP is equivalent to find the assignment accompanied by the 

best satisfaction degree of the problem. 

In general, the structure of FCSPs can be represented by a 

constraint graph, where nodes and edges correspond to variables 

and constraints. Another form of the graph is a dual constraint 

graph, which represents constraints as nodes and nonempty sets of 

 

Fig. 1 A screenshot of the main window of the tool. 



 

 

variables as edges. In this paper instead, we represent FCSPs with 

variable nodes (rounds), constraint nodes (squares), and edges of 

their connections (Fig. 1, 2). It can express states of variables and 

constraints at once by changing the appearance of the nodes. 

3. A TOOL FOR FCSPS 

We implemented a tool in Java based on our CSP library Stlics 

(Fig. 1). The tool offers the following 10 solvers implemented in 

the library: Breakout [5], SRS 3 revised for crisp problems, the 

forward checking [6], GENET, and the local changes (for crisp 

problems), and the flexible local changes [7], the fuzzy Breakout, 

the fuzzy forward checking, fuzzy GENET [8], and SRS 3 [9] (for 

fuzzy problems). Users can load arbitrary problems that the Stlics 

library outputs, apply above solvers, and obtain a solution. 

The tool provides two types of view of constraint graphs: the 

two-dimensional (2D) view and three-dimensional (3D) view (Fig. 

2). In order to make appropriate layouts of graphs, we adopted the 

modified spring model [10] and its extension for the 3D view. The 

equations for calculating the forces of springs are as follows: 

fa d = ca
d2

k
 , fr d = −cr

k2

d
, 

where fa  and fr  means attractive and repulsive forces among 

nodes, d and k are the actual and the ideal distance between two 

nodes, and ca  and cr are constants that decides the strength of 

those forces respectively. fa takes effect between connected nodes, 

variable and constraint nodes, and fr does among other nodes. In 

the 3D view, nodes are mapped on the surface of a virtual sphere. 

Users can customize the constants of the forces and the radius of 

the sphere, and can rotate and scale the views. 

Showing the behavior of solvers is another important function 

provided by our tool, which flashes each variable node when a 

solver assign values to the corresponding variable, and it can 

change the color of variable nodes and constraint nodes in response 

to the change of assignment counts and the degree of satisfaction 

respectively. To analyze FCSPs, users can have the tool detect 

loops of assignments, which is a phenomenon that a solver iterates 

trying to assign the same values to the same variables. In addition, 

users can put break points on any variables to pause solvers when 

they assign values to the variables, and can execute solvers 

gradually, which is called step over in IDEs. 

4. CONCLUSION 

We showed our ongoing work to develop a tool for analyzing 

and visualizing FCSPs, which enables users who utilize FCSPs as a 

tool to comprehend the structure of FCSPs and the behavior of 

solvers intuitively. The features of our tool are the 3D view of 

constraint graphs and the loop detection function. In addition, users 

can debug FCSP models with operations like ones given some 

IDEs for programming languages. 

We need to implement functions to generate FCSP models from 

scratch and to edit them. So far, instead, users have to write a 

program of a model in Java, to output the model as a text file, and 

to have the tool load it. We are planning to add the functionality of 

editing to the tool and to make it comprehensive development tool 

for FCSPs. In addition, we are going to show the effectiveness of 

the tool by using it for improving our previous study [2]. 
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Fig. 2 the two-dimensional (2D) view (a) and the three-dimensional 

(3D) view (b) of a constraint graph. 


