
1

Personalizing Graphical User Interfaces
on Flexible Widget Layout

Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara

Hokkaido University, Japan

2

Contents

1.Demonstration
● The flexible widget layout system [27]

(An implementation in Java)

2.Flexible widget layout [a]
3.Personalization

[27] Demo of flexible widget layout
http://kussharo.complex.eng.hokudai.ac.jp/~takty/demo/fwl.en.html

[a] T. Yanagida and H. Nonaka. Flexible Widget Layout Formulated as Fuzzy Constraint Satisfaction
Problem. In Proc. of KES IDT 2009, 2009.

3

Widget layouts
● The process of deciding positions and sizes of

widgets (list boxes, radio buttons, and panels)

The layout has a significant impact on the usability
of tasks which can be accomplished with GUIs.

4

Model-based UI design
● In the field of model-based UI design

● Systems generate UIs from logical descriptions.

● It is useful for realizing the diversity of UIs.

Logical descriptions (UI models)
● specifying UI functions independently of

platforms, instead of specifying widgets.

System

Logical description
(UI model)

5

Widget layouts + model-based UI
● In the field of model-based UI design

● A layout system needs to select widgets before
creating a layout.

● In addition, widgets are sometimes not uniquely
determined.

A system could select small widgets of
inferior usability for small screens, or large
ones of sufficient usability for large screens.

Related studies on how to generate GUIs

6

Related work (1/2)
● Design time layout systems

● An adaptive algorithm for automated UI design [5]
● An approach using mathematical relationships [2]

● Dynamic layout
● GADGET [9]
● SUPPLE [11]

[5] J. Eisenstein, A. Puerta, and R. Software. Adaption in automated user-interface design. In Proc. of IUI
2000, 2000.

[2] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J. Vanderdonckt. Towards a dynamic strategy for
computer-aided visual placement. In Proc. of AVI ’94, pp. 78–87, Italy, 1994.

[9] J. Fogarty and S. E. Hudson. Gadget: a toolkit for optimization-based approaches to interface and
display generation. In Proc. of UIST ’03, pp. 125–134, Canada, 2003.

[11] K. Gajos and D. S. Weld. SUPPLE: automatically generating user interfaces. In Proc. of IUI ’04, pp.
93–100, Portugal, 2004.

7

Related work (2/2)
● Plasticity of widgets

● Handling widget selections as plasticity [3]
● The graceful degradation [8]
● An intelligent editor for GUIs [4]

● Other studies
● A lot of studies for the LSI or VLSI layout problem
● Existing layout managers offered by GUI toolkits

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt. A unifying
reference framework for multi-target user interfaces. Interacting with Computers, 15:289–308, 2003.

[8] M. Florins and J. Vanderdonckt. Graceful degradation of user interfaces as a design method for
multiplatform systems. In Proc. of IUI 2004, pp. 140–147, Portugal, 2004.

[4] B. Collignon, J. Vanderdonckt, and G. Calvary. An intelligent editor for multi-presentation user
interfaces. In Proc. of SAC 2008, pp. 1634–1641, Brazil, 2008.

8

Consideration (1/2)
● How to select widgets for UI functions?

● General usability guidelines
● Adaptation to users and environments

● Tactics of widget selections
● To select properly desirable ones

– Trade-off between usability and
ease of layout

– All widget can be put inside a
dialog box

Viewpoint of
desirability

9

Consideration (2/2)
● GUI generations in model-based UI designs

● “To select properly desirable widgets to be put in a
dialog box”

● General usability guidelines
● Adaptation to users and environments

A system needs to generate layouts
dynamically at run-time.

10

Our method
● Flexible widget layout (FWL)

● Automated GUI generation based on UI models
– Widgets to be used are dynamically selected.
– Layout processes are rapidly finished.

GUIs corresponding to
the same UI model

FWL
System

11

1.Generate an FCSP*
from the given model

2.Solve the FCSP to get
combinations of widgets

3.Make a layout Output

Input

Phases of FWL
V1

V2

V3

V4 V5

V1 = 3
V2 = 1
V3 = 0
V4 = 3
V5 = 2...

UI model FCSP

Assignments Layout

Phase 1

Phase 3

Phase 2

* Fuzzy constraint satisfaction problem: a method for modeling problem,
which is offered in the field of artificial intelligence.

12

● Abstract interaction description language (AIDL)
● UI function description based on selection act model

– Selection elements (acts)
● Choices

– A set of choices
– A type

– Group elements
– Description elements (text)

Logical description (UI model)

13

<aidl:aidl xmlns:aidl="http://aiwww.main.ist.hokudai.ac.jp/aidlns/">
<aidl:dialog>

<aidl:group>
<aidl:selection>...</aidl:selection>
<aidl:group>

<aidl:group>
<aidl:group>

<aidl:selection aidl:opposite="true">...</aidl:selection>
<aidl:selection aidl:opposite="true">...</aidl:selection>

</aidl:group>
<aidl:selection>...</aidl:selection>

</aidl:group>
<aidl:selection>...</aidl:selection>

</aidl:group>
</aidl:group>
<aidl:group>

<aidl:selection>...</aidl:selection>
<aidl:selection>...</aidl:selection>

</aidl:group>
</aidl:dialog>

</aidl:aidl>

G1

G2

G4

G5

G6

G3

G1

G3G2

S7S6S1 G4

S5G5

S4G6

S2 S3

Tree structure of model

14

S6

S7

S1

S2

S3

S5

S4

<aidl:selection>
<aidl:description aidl:abbr="FW" aidl:caption="Find what" />
<aidl:state>String</aidl:state>
<aidl:strings />

</aidl:selection>

<aidl:selection aidl:opposite="true">
<aidl:strings>

<aidl:choice aidl:str="Match whole word only" />
<aidl:choice aidl:str="Match partial word" />

</aidl:strings>
</aidl:selection>

<aidl:selection aidl:opposite="true">
<aidl:strings>

<aidl:choice aidl:str="Match case" />
<aidl:choice aidl:str="Match no case" />

</aidl:strings>
</aidl:selection>

<aidl:selection>
<aidl:strings>

<aidl:choice aidl:str="Use regex" />
<aidl:choice aidl:str="Wrap search" />
<aidl:choice aidl:str="Incremental search" />

</aidl:strings>
</aidl:selection>

<aidl:selection>
<aidl:description aidl:abbr="DIR" aidl:caption="Direction" />
<aidl:strings>

<aidl:choice aidl:str="Up" />
<aidl:choice aidl:str="Down" />

</aidl:strings>
</aidl:selection>

<aidl:selection><aidl:description aidl:caption="Find next" /></aidl:selection>

<aidl:selection><aidl:description aidl:caption="Cancel" /></aidl:selection>

Each element

15

● Flexible widget layout problem
● To determine widget candidate sets

– Each element of the model is mapped to them.

Candidate sets

16 widgets
Ei

Ej
Wi

Wj

S5

decided statically
based on a table

16

FWL (1/4)

Left labeling Top labeling

CWCW
DWDW

CWCW

DWDW

● Container widgets (5 widgets)
● Selection of container widgets expresses

selection of positioning.
● Group elements and positioning of description

Container widget candidate set Wi ⊂WC

w1w1
w2w2
w3w3

w1w1 w2w2 w3w3 w1w1

Vertical array Horizontal array Tab pages

For group elements For positioning of
description elements

WC =

17

FWL (2/4)
● Normal widgets (11 widgets)

● A subset adopted in many toolkits (9+2 types)
● Selection and description elements

Normal widget candidate set Wi ⊂WN

Caption labels, Abbreviation labels

For selection
elements

For description
elements

WN =

18

FWL (3/4)
● Properties of widgets

● Minimum size: msw = ‹ms.widthw, ms.heightw›
● Desirability for each type: 0 ≤ α ≤ 1

● Trade-off between usability and ease of layout

You can define it for each user (adaptation)

Radio buttons Drop-down list box

Appearance

UI function Same Same
The ease of layout Worse Better
Usability Better Worse

19

FWL (4/4)
● Layout rules (constraints on layouts)

● Feasibility of Layout
– Whether or not all widgets can be in a dialog box?

Must be satisfied
● Desirability of layout

– Minimum of desirability of selected widgets
To be maximized

“A layout-able and desirable solution”

A combination of widgets

20

Combination of widgets
G1

G3G2

S7S6S1 G4

S5G5

S4G6

S2 S3

3

3 3

3

3

3

1 1

1

3

2

2 2

279,936 combinations

S6

S7

S1

S2

S3

S5

S4

Label type: 2
pos: 2

Label type: 2
pos: 2

21

Formulation (1/3)
● Flexible widget layout problem

● Widget selections
● Desirability of layout

● Combinatorial search
● Fuzzy constraints

Formulated as

Fuzzy constraint satisfaction problems (FCSPs)
● Combinatorial search problem that decides

assignments to variables that almost satisfy all
constraints among variables

22

Formulation (2/3)
● Fuzzy constraint satisfaction problem (FCSP)

– a set of variables: X = {x1, ... , xm}
– a set of domains: D = {D1, ... , Dm}
– a set of constraints: C = {c1, ... , cr}

● ck: membership function μRk(v[Sk]) satisfaction degree
● Sk: scope (variables related to ch)
● v: assignment for all variables

– A solution of an FCSP
● An assignment v is a solution if Cmin(v) > 0.
● The minimum of all constraint satisfaction degrees.

Cmin(v) = min(μRk(v[Sk]))

23

● Variables: widget selections by its assignment
● Domains: sets of widget candidates
● Constraints ： desirability and parental relations

Formulation (3/3)

The scale of domains is reduced.

Sizes and positions of widgets are
NOT represented directly as variables.

24

Personalization of GUIs

Personalization of GUIs on FWL

A method for customizing
fuzzy membership functions

Problem: how to define the desirability?
● UIs for deciding desirability by users

25

Pairwise comparison method (1/2)
● Pairwise comparison method (PCM)

● computes weights of elements by comparing
elements two by two in a certain criterion
– Thurstone's method

– Scheffé's method

– Analysis hierarchy process (AHP)

Item 1 Item 2
better even

2 1 0 -1 -2

better

Item 1 Item 2

Order of elements

Weights of elements

26

Pairwise comparison method (2/2)
● Implementation of PCM

● JPairwiseComparisonDialog
– The 3 methods
– Sliders or pairs of toggled buttons

to represent pairs of elements

To utilize PCM to calculate
desirability of widgets...

27

Problem of PCM
● Total order is required

● Desirability is represented as degree of constraint
satisfaction of FCSP

● For calculating desirability of 16 widgets, 120 pairs
need to be evaluated by users

Too many pairs to get a total
order of desirability of widgets

28

Personalization dialog
● UI for evaluating subgroups of widgets

● Separate widgets
into some groups

● Define the order of
them with PCM

● Marge the groups
with wights

29

Preliminary experiment
● To verify that our method actually personalize

the FWL for each user
● 4 subjects familiar with GUIs but not experts
● A sample model
● No situations specified

● Subjects freely use our system for a while
● Questionnaires

30

Results of personalization (1/4)
List box multiple

Drop-down list box

Check boxes

Slider Spinner

Check box

Radio buttonsList box

Abbreviation label Caption label

Tab pages Horizontal array Vertical array

Top labeling Left labeling Border labeling

● Subject A

Assumption:
A kind of web forms
usable by a mobile phone

31

Results of personalization (2/4)
List box multipleCheck boxes

Border labeling

Caption labelAbbreviation label

Tab pages Horizontal array Vertical array

Left labeling

Top labeling

List box

Radio buttons

Slider Spinner

Drop-down list box

Check box

● Subject B

Assumption:
A vertically long dialog
box and widgets fit in it

32

Results of personalization (3/4)
List box multiple

Drop-down list box

Check boxes

SliderSpinner

Check box

Radio buttons List box

Abbreviation label Caption label

Tab pages Horizontal array Vertical array

Top labelingLeft labelingBorder labeling

● Subject C

Assumption:
Smallest layout with no
wasted space

33

Results of personalization (4/4)
List box multiple

Drop-down list box

Check boxes

Slider SpinnerCheck box Radio buttons

List box

Abbreviation label

Caption label

Tab pagesHorizontal array Vertical array

Top labeling

Left labeling Border labeling

● Subject D

Assumption:
Smallest layout with no
wasted space

34

Comments
● Were they able to personalize layouts?

● Yes, they can do it to an extent.
● Sometimes it is too sensitive.

● Was the operation easy?
● No, it is not understandable and intuitive.
● Quick responses and PCM itself are intuitive.

● Other comments
● We should add an adjustment operation.
● Sub-grouping is not appropriate.

35

Conclusion
● Method for personalizing the FWL

● Introducing pairwise comparison method and
sub-grouping of widgets

● Indicating the method can generate desirable GUIs
for each user

● Future work
● To include other criterion for evaluating widgets
● To investigate automatic personalization methods

36

Thank you

Personalizing Graphical User Interfaces on
Flexible Widget Layout

Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara

Hokkaido University, Japan

