Personalizing Graphical User Interfaces on Flexible Widget Layout

Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara Hokkaido University, Japan

Contents

- 1.Demonstration
 - The flexible widget layout system [27] (An implementation in Java)
- 2.Flexible widget layout [a]
- 3. Personalization

Widget layouts

 The process of deciding positions and sizes of widgets (list boxes, radio buttons, and panels)

The layout has a significant impact on the usability of tasks which can be accomplished with GUIs.

Model-based UI design

- In the field of model-based UI design
 - Systems generate UIs from logical descriptions.

Logical descriptions (UI models)

- specifying UI functions independently of platforms, instead of specifying widgets.
- It is useful for realizing the diversity of Uls.

Widget layouts + model-based UI

- In the field of model-based UI design
 - A layout system needs to select widgets before creating a layout.
 - In addition, widgets are sometimes not uniquely determined.

A system could select small widgets of inferior usability for small screens, or large ones of sufficient usability for large screens.

Related studies on how to generate GUIs

Related work (1/2)

- Design time layout systems
 - An adaptive algorithm for automated UI design [5]
 - An approach using mathematical relationships [2]
- Dynamic layout
 - GADGET [9]
 - SUPPLE [11]
- [5] J. Eisenstein, A. Puerta, and R. Software. Adaption in automated user-interface design. In Proc. of IUI 2000, 2000.
- [2] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J. Vanderdonckt. Towards a dynamic strategy for computer-aided visual placement. In Proc. of AVI '94, pp. 78–87, Italy, 1994.
- [9] J. Fogarty and S. E. Hudson. Gadget: a toolkit for optimization-based approaches to interface and display generation. In Proc. of UIST '03, pp. 125–134, Canada, 2003.
- [11] K. Gajos and D. S. Weld. SUPPLE: automatically generating user interfaces. In Proc. of IUI '04, pp. 93–100, Portugal, 2004.

Related work (2/2)

- Plasticity of widgets
 - Handling widget selections as plasticity [3]
 - The graceful degradation [8]
 - An intelligent editor for GUIs [4]
- Other studies
 - A lot of studies for the LSI or VLSI layout problem
 - Existing layout managers offered by GUI toolkits
- [3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt. A unifying reference framework for multi-target user interfaces. Interacting with Computers, 15:289–308, 2003.
- [8] M. Florins and J. Vanderdonckt. Graceful degradation of user interfaces as a design method for multiplatform systems. In Proc. of IUI 2004, pp. 140–147, Portugal, 2004.
- [4] B. Collignon, J. Vanderdonckt, and G. Calvary. An intelligent editor for multi-presentation user interfaces. In Proc. of SAC 2008, pp. 1634–1641, Brazil, 2008.

Consideration (1/2)

- How to select widgets for UI functions?
 - General usability guidelines
 - Adaptation to users and environments

Viewpoint of desirability

- Tactics of widget selections
 - To select properly desirable ones
 - Trade-off between usability and ease of layout
 - All widget can be put inside a dialog box

Consideration (2/2)

- GUI generations in model-based UI designs
 - "To select properly desirable widgets to be put in a dialog box"
 - General usability guidelines
 - Adaptation to users and environments

A system needs to generate layouts dynamically at run-time.

Our method

- Flexible widget layout (FWL)
 - Automated GUI generation based on UI models
 - Widgets to be used are dynamically selected.
 - Layout processes are rapidly finished.

Find what:

Match whole word only

Match case

Use regex

Wrap search

Incremental search

GUIs corresponding to the same UI model

Cancel

Flexible Widg... □ X

Personalize
Find what:

Find next

Phases of FWL

1.Generate an FCSP* from the given model

2. Solve the FCSP to get combinations of widgets

3. Make a layout

Assignments

Layout

Personalize
Find what
String
Match whole word only
Match case
Use regex
Wrap search
Incremental search
Direction: Up
Find next
Cancel

^{*} Fuzzy constraint satisfaction problem: a method for modeling problem, which is offered in the field of artificial intelligence.

Logical description (UI model)

- Abstract interaction description language (AIDL)
 - UI function description based on selection act model
 - Selection elements (acts)
 - Choices
 - A set of choices
 - A type
 - Group elements
 - Description elements (text)

Tree structure of model

Each element

```
<aidl:selection>
                                                     <aidl:description aidl:abbr="FW" aidl:caption="Find what" />
                                                     <aidl:state>String</aidl:state>
🚣 Flexible Widg... 💶 🗆 🔀
                                                     <aidl:strings />
                                                  </aidl:selection>
 Personalize_
                                                  <aidl:selection aidl:opposite="true">
Find what:
                                                     <aidl:strings>
                                                        <aidl:choice aidl:str="Match whole word only" />
              S
                                                        <aidl:choice aidl:str="Match partial word" />
                                                     </aidl:strings>
  String
                                                  </aidl:selection>
    Match wSe word only
                                                  <aidl:selection aidl:opposite="true">
                                                     <aidl:strings>
                                                        <aidl:choice aidl:str="Match case" />
     MaSa case
                                                        <aidl:choice aidl:str="Match no case" />
                                                     </aidl:strings>
                                                  </aidl:selection>
     Use regex
                                                   <aidl:selection>
     Wrap seSich
                                                     <aidl:strings>
                                                        <aidl:choice aidl:str="Use regex" />
     Incremental search
                                                        <aidl:choice aidl:str="Wrap search" />
                                                        <aidl:choice aidl:str="Incremental search" />
                                                     </aidl:strings>
Direction:
              S
                                                  </aidl:selection>
                                                   <aidl:selection>
                                                     <aidl:description aidl:abbr="DIR" aidl:caption="Direction" />
   FinSaext
                                                     <aidl:strings>
                                                        <aidl:choice aidl:str="Up" />
                                                        <aidl:choice aidl:str="Down" />
                                                     </aidl:strings>
    C:Sigel
                                                  </aidl:selection>
                                                 { <aidl:selection> <aidl:description aidl:caption="Find next" /> </aidl:selection>
                                                <aidl:selection><aidl:description aidl:caption="Cancel" /></aidl:selection>
```

Candidate sets

- Flexible widget layout problem
 - To determine widget candidate sets
 - Each element of the model is mapped to them.

FWL (1/4)

- Container widgets (5 widgets)
 - Selection of container widgets expresses selection of positioning.
 - Group elements and positioning of description
 - Container widget candidate set $W_i \subset W_C$

For group elements

For positioning of description elements

FWL (2/4)

- Normal widgets (11 widgets)
 - A subset adopted in many toolkits (9+2 types)
 - Selection and description elements
 - \longleftrightarrow

Normal widget candidate set $W_i \subset W_N$

FWL (3/4)

- Properties of widgets
 - Minimum size: $ms_{w} = \langle ms.width_{w}, ms.height_{w} \rangle$
 - **Desirability** for each type: $0 \le \alpha \le 1$
 - You can define it for each user (adaptation)
 - Trade-off between usability and ease of layout

FWL (4/4)

- Layout rules (constraints on layouts)
 - Feasibility of Layout
 - Whether or not all widgets can be in a dialog box?

- Desirability of layout
 - Minimum of desirability of selected widgets

"A layout-able and desirable solution"

A combination of widgets

Combination of widgets

Formulation (1/3)

- Flexible widget layout problem
 - Widget selections
 - Desirability of layout

- Combinatorial search
- Fuzzy constraints

Fuzzy constraint satisfaction problems (FCSPs)

 Combinatorial search problem that decides assignments to variables that almost satisfy all constraints among variables

Formulation (2/3)

Fuzzy constraint satisfaction problem (FCSP)

- a set of variables: $X = \{x_1, \dots, x_m\}$
- a set of domains: $D = \{D_1, \dots, D_m\}$
- a set of constraints: $C = \{c_1, \dots, c_r\}$
 - c_k : membership function $\mu R_k(v[S_k])$ \longrightarrow satisfaction degree
 - S_k : scope (variables related to C_k)
 - v: assignment for all variables

A solution of an FCSP

- An assignment v is a solution if Cmin(v) > 0.
- The minimum of all constraint satisfaction degrees.

$$Cmin(v) = \min(\mu R_k(v[S_k]))$$

Formulation (3/3)

Sizes and positions of widgets are **NOT** represented directly as variables.

- Variables: widget selections by its assignment
- Domains: sets of widget candidates
- Constraints: desirability and parental relations

The scale of domains is reduced.

Personalization of GUIs

Personalization of GUIs on FWL

Problem: how to define the desirability?

Uls for deciding desirability by users

A method for customizing fuzzy membership functions

Pairwise comparison method (1/2)

- Pairwise comparison method (PCM)
 - computes weights of elements by comparing elements two by two in a certain criterion
 - Thurstone's method
 - Order of elements

Scheffé's method

Analysis hierarchy process (AHP)

Pairwise comparison method (2/2)

- Implementation of PCM
 - JPairwiseComparisonDialog
 - The 3 methods
 - Sliders or pairs of toggled buttons to represent pairs of elements

To utilize PCM to calculate desirability of widgets...

Problem of PCM

- Total order is required
 - Desirability is represented as degree of constraint satisfaction of FCSP
 - For calculating desirability of 16 widgets, 120 pairs need to be evaluated by users

Too many pairs to get a total order of desirability of widgets

Personalization dialog

UI for evaluating subgroups of widgets

 Separate widgets into some groups

 Define the order of them with PCM

Marge the groups with wights

Preliminary experiment

- To verify that our method actually personalize the FWL for each user
 - 4 subjects familiar with GUIs but not experts
 - A sample model
 - No situations specified
 - Subjects freely use our system for a while
 - Questionnaires

Results of personalization (1/4)

Item 1

Subject A

Results of personalization (2/4)

Subject B

Results of personalization (3/4)

Subject C

Results of personalization (4/4)

Subject D

Comments

- Were they able to personalize layouts?
 - Yes, they can do it to an extent.
 - Sometimes it is too sensitive.
- Was the operation easy?
 - No, it is not understandable and intuitive.
 - Quick responses and PCM itself are intuitive.
- Other comments
 - We should add an adjustment operation.
 - Sub-grouping is not appropriate.

Conclusion

- Method for personalizing the FWL
 - Introducing pairwise comparison method and sub-grouping of widgets
 - Indicating the method can generate desirable GUIs for each user
- Future work
 - To include other criterion for evaluating widgets
 - To investigate automatic personalization methods

Thank you

Personalizing Graphical User Interfaces on Flexible Widget Layout

Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara Hokkaido University, Japan