
Improved Formulation of Flexible Widget Layout

Takuto Yanagida
*
 and Hidetoshi Nonaka

*

*
Graduate School of Information Science and Technology

Hokkaido University, Sapporo 060-0814, Japan

Tel: +81-11-706-6861, Fax: +81-11-706-6861

E-mail: {takty, nonaka}@main.ist.hokudai.ac.jp

Abstract—We propose an improvement of our previous work, a

formulation of the flexible widget layout (FWL) problem as a

fuzzy constraint satisfaction problem (FCSP). Automatic widget

layout is an important challenge for the graphical user interfaces

(GUIs) generation. In the field of model-based user interface

design, the layout is more complicated because to select widgets is

needed. FWL is GUI generations with deciding which widgets are

used. In this paper, we improve our previous work so that the

formulation coincides more strictly with FCSP.

I. INTRODUCTION

Automatic widget layout is one of the most important

challenges for the dynamic generation of graphical user

interfaces (GUIs). Especially, in the model-based user interface

(UI) design, widget layout is more complicated. In the field, a

system generates GUIs based on logical descriptions, which

specify UI functions instead of widgets. Thus, a system must

select widgets before placing them.

Automatic GUI generation from logical descriptions requires

both deciding which widgets are used and completing the

layout immediately especially when a system does this at run

time. We call the layout satisfying the conditions, the flexible

widget layout (FWL), and we call the problem of determining a

layout which fulfills conditions of widgets, the FWL problem.

In our previous work [2, 4], we have proposed a formulation

of FWL problem as a fuzzy constraint satisfaction problem

(FCSP) and a method for solving the problem. In our

formulation, fuzzy constraints express subjective constraint

conditions involved with usability, sensitivity, etc. Moreover,

our method can perform the layout in a practical time.

In this paper, we improve our previous work so that the

formulation coincides more strictly with FCSP. In the first

formulation, its domains are not statically decided, but

dynamically change when searching solutions. Therefore,

binary constraints checking these domains are in fact under the

influence of more than two variables. In this paper, this

problem is resolved using the binarization of n-ary constraints.

II. FLEXIBLE WIDGET LAYOUT PROBLEM

The FWL problem is a solution search problem for finding

better combinations of widgets. Each widget is selected from a

widget candidate set, which contains widgets representing the

same UI function, but having different size and desirability. UI

functions are modeled as selection act model, where they are

represented as selection acts [1, 3]. A set of UI elements is

expressed as 𝑈 = 𝑈S ∪ 𝑈G ∪ 𝑈D , where 𝑈S , 𝑈G , and 𝑈D

denotes respectively selection, group, and description elements.

The UI elements are represented as widgets 𝑊 = 𝑊N ∪𝑊C ,

which are divided into normal widgets and container widgets.

As normal widgets, we use eight widely-used widgets for

representing selection elements; and caption label and abbr.

label for description elements. As container widgets, we use

vertical array, horizontal array, and tab pages for representing

group elements; and left labeling and top labeling for the

positioning of description elements. We defined the desirability

𝛼 ∈ 0,1 corresponding to types of widgets; we order the

desirability in terms of the usability of the widgets.

The UI elements are mapped to corresponding widget sets.

Selection elements and description elements are mapped to a

set of normal widget candidates 𝑊𝑖 ⊂ 𝑊N , and group elements

and positioning of description elements are mapped to a set of

container widget candidates 𝑊𝑖 ⊂ 𝑊C . A UI element is

represented with widget 𝑤 ∈ 𝑊𝑖 chosen from its candidate set.

Each widget candidate 𝑤 ∈ 𝑊𝑖 has a unique minimum size

𝑚𝑠𝑤 = 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤 , 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤 , which is defined by a

corresponding UI element.

III. FORMULATION

In the formulation, variable 𝑥𝑖 ∈ 𝑋 corresponds to widget

candidate set 𝑊𝑖 and the value assigned in it expresses a

selected candidate from the set. 𝑋 is divided into 𝑋N and 𝑋C ,

which express the variable sets for the normal and container

widget candidates respectively. Widget candidate sets of

selections, groups, descriptions, and the positioning of the

descriptions, are expressed with the variables.

The values of domains are tuples, which are calculated from

the bottom to the top of the tree structure of the variables. The

domain of 𝑥𝑖 ∈ 𝑋N is a set of the tuples as follows:

𝐷𝑖 ∈ 𝐷N = 𝑤,𝑚𝑠𝑤 𝑤 ∈ 𝑊𝑖 ⊂ 𝑊N ,

where 𝑚𝑠𝑤 = 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤 , 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤 is the minimum

size of 𝑤. The minimum size is defined by the type of widget,

its item size, and the item height. The domain of 𝑥𝑖 ∈ 𝑋C is a

set of the tuples as follows:

𝐷𝑖 ∈ 𝐷C = 𝑤,𝑀,𝑚𝑠𝑤,𝑀 𝑤 ∈ 𝑊𝑖 ⊂ 𝑊C ,
 𝑀 ∈ 𝐷child 𝑖,1 × ⋯ × 𝐷child 𝑖,cn 𝑖

, checksize 𝑊𝑖 , 𝑚𝑠𝑤,𝑀 ,

where 𝑀 is a combination of values of child widget

candidates, child(𝑖, 𝑗) is the function for obtaining the index

of 𝑗th child of 𝑊𝑖 , cn𝑖 is the number of children of 𝑊𝑖 , and

checksize(𝑊𝑖 , 𝑚𝑠) is the function which checks whether the

combination of its parameters is available or not with estimated

minimum size (ems) (Function 1). By this function, the

domains for container variables are pruned when constructing a

FCSP. In the function, 𝑔𝑖𝑣𝑒𝑛_𝑤𝑖𝑑𝑡ℎ and 𝑔𝑖𝑣𝑒𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 are

given as the size of the client area of the dialog box, and

function ems′ is defined as follows:

ems′ 𝑊𝑖 ⊂ 𝑊C , 𝑚𝑠𝑤∈𝑊𝑖,𝑗

= min
𝑤∈𝑊𝑖

 𝑚𝑠′′𝑤, ems 𝑊𝑖,1 ,…,𝑚𝑠𝑤 ,…,ems 𝑊𝑖,cn (𝑖)
 ,

ems(𝑊𝑖 ⊂ 𝑊C) = min
𝑤∈𝑊𝑖

 𝑚𝑠′𝑤, ems 𝑊𝑖,1 ,…,ems 𝑊𝑖,cn (𝑖)
 ,

ems 𝑊𝑖 ⊂ 𝑊N = min
𝑤∈𝑊𝑖

 𝑚𝑠𝑤

= min
𝑤∈𝑊𝑖

(𝑚𝑠. 𝑤𝑖𝑑𝑡ℎ𝑤) , min
𝑤∈𝑊𝑖

(𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤) .

The container widgets have different sizes of child widgets;

thus, the sizes of tuples of their domains are also different. The

minimum size of vertical array (VA), horizontal array (HA),

and tab pages (TP) is calculated with the minimum sizes of its

child widgets (𝑚𝑠𝑤𝑖,𝑗
= 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤𝑖,𝑗

, 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖,𝑗
) as

follows (where gaps of children and tabs space are omitted):

𝑚𝑠VA∈𝑊𝑖
= max

𝑗
 𝑚𝑠. 𝑤𝑖𝑑𝑡ℎ𝑤𝑖,𝑗

 , 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖,𝑗
𝑗

 ,

𝑚𝑠HA∈𝑊𝑖
= 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤𝑖,𝑗

𝑗
 , max

𝑗
 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖 ,𝑗

 ,

𝑚𝑠TP∈𝑊𝑖
= max

𝑗
 𝑚𝑠. 𝑤𝑖𝑑𝑡ℎ𝑤𝑖 ,𝑗

 , max
𝑗

 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖 ,𝑗
 .

The minimum sizes of a left labeling (LL) and a top labeling

(TL) are calculated based on the size of their description

widget (𝑚𝑠𝑤𝑖,D
) and the minimum sizes of their one child

widget (𝑚𝑠𝑤𝑖,C
) as follows (where gaps are omitted):

𝑚𝑠LL∈𝑊𝑖
= 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤𝑖,D

+ 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤𝑖 ,C
 ,

 max 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖 ,D
, 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖,C

 ,

𝑚𝑠TL∈𝑊𝑖
= max 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ𝑤𝑖 ,D

, 𝑚𝑠. 𝑤𝑖𝑑𝑡ℎ𝑤𝑖 ,C
 ,

 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖,D
+ 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑖 ,C

 .

When the estimated minimum sizes of container widgets are

calculated, the above equations are also used, but, instead of

actual widget sizes, the estimated minimum sizes of child

widgets are used recursively there.

In this formulation, crisp and fuzzy constraints are used

accordingly. Each variable is connected by a unary constraint

for representing the desirability, and two variables of a

container and one of its child elements are connected by a

binary constraint for representing a parental relationship. Unary

constraint 𝑐𝑘 ∈ 𝐶D denotes the desirability of the value of its

scope 𝑥𝑘1
 as their satisfaction degrees. If the scope of 𝑐𝑘 is

𝑆𝑘 = 𝑥𝑘1
 and the value of 𝑥𝑘1

 is 𝑣 ∈ 𝐷𝑘1
 = 𝑤,… ,𝑤 ∈

𝑊𝑘1
, the satisfaction degree of 𝑐𝑘 is calculated as follows:

𝑐𝑘 𝑣 ∈ 𝐶D = 𝑑𝑒𝑠 𝑤 ,

where 𝑑𝑒𝑠 is the projection from widgets to their desirability

𝛼. A binary constraint 𝑐𝑘 ∈ 𝐶P denotes whether the assign-

ments of the variables of its scope correspond with each other.

Each value is a tuple of a combination of widget and its

minimum size, and thus, this constraint accords this

combination with the actual combination of its child widgets. If

the scope of 𝑐𝑘 is 𝑆𝑘 = 𝑥𝑘1
, 𝑥𝑘2

 , the value of 𝑥𝑘1
 is

𝑣𝑝 ∈ 𝐷𝑘1
 = 𝑤,𝑀,𝑚𝑠𝑤 , and the value of 𝑥𝑘2

 is 𝑣𝑐 ∈ 𝐷𝑘 2
,

the satisfaction degree of 𝑐𝑘(𝑣𝑝 , 𝑣𝑐) is calculated as follows:

𝑐𝑘 𝑣p , 𝑣c ∈ 𝐶P =
1 if 𝑣c = 𝑀 childindex(𝑥𝑘1

, 𝑥𝑘2
)

0 otherwise
.

where childindex(𝑥1 , 𝑥2) is the projection from pairs of

variables to the index of the widget candidates (corresponding

to 𝑥2 ∈ 𝑋) as a child of the parent widget candidates

(corresponding to 𝑥1 ∈ 𝑋C).

IV. CONCLUSIONS

In this paper, we have proposed an improved formulation of

the flexible widget layout problem (FWL). The formulation

presented here coincides more strictly with the FCSP

framework, and thus, the possibility of extending this work

with other techniques for FCSP is increased. The widget

selection before doing layout is general; it is not specific for

model-based GUI generations, because GUI designers also

need to select widgets when they do layouts by hand. Although

the constraints in the problem are limited to parental

compositions and widget desirability, this limitation is posed in

the current implementation, but not in our approach itself.

REFERENCES

[1] Yanagida, T., Nonaka, H.: Architecture for migratory adaptive

user interfaces. In: Proceedings of CIT 2008, pp. 450–455. IEEE,

Sydney, Australia (2008).

[2] Yanagida, T., Nonaka, H.: Flexible widget layout with fuzzy

constraint satisfaction. In: Proceedings of SMCia/08, pp. 387–392.

IEEE, Muroran, Japan (2008).

[3] Yanagida, T., Nonaka, H.: Interaction description with service-

specific meanings. In: Proceedings of CITSA 2008, pp. 185–

188. IIIS, Orlando, FL, USA (2008).

[4] Yanagida, T., Yasuhiro, S., Nonaka, H.: Flexible widget layout

based on fuzzy constraint satisfaction. Journal of Japan Society

for Fuzzy Theory and Intelligent Informatics 20 (6), pp. 840-849,

(2008).

Function 1 checksize(𝑊𝑖,𝑗 ,𝑚𝑠)

if 𝑊𝑖 is root then

if 𝑚𝑠.𝑤𝑖𝑑𝑡ℎ ≤ 𝑔𝑖𝑣𝑒𝑛_𝑤𝑖𝑑𝑡ℎ 𝐚𝐧𝐝 𝑚𝑠. ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑔𝑖𝑣𝑒𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 then
return true

else

return false
end if

else

𝑚𝑠′ ← ems′(𝑊𝑖 ,𝑚𝑠)

return checksize(𝑊𝑖 ,𝑚𝑠′)
end if.

