
Migratory Adaptive User Interfaces
Takuto Yanagida and Hidetoshi Nonaka

Graduate School of Information Science and Technology
Hokkaido University, Sapporo, 060-0814, Japan
Tel: +81-11-706-6861, Fax: +81-11-706-6862

E-mail: {takty, nonaka}@main.ist.hokudai.ac.jp

Abstract—We propose a new solution named interface cli-
ent/logic server (ICLS), targeting dialog-based interactive ser-
vices, supporting user interface (UI) migration, and offering
adaptive UIs for devices and services. Constant improvements of
technology have brought a large variety of platforms, and that
has made users’ new demands about the services. The first is that
the users would like to use services through different devices and
modalities depending on their use contexts. The second is that
the users would sometimes like to change devices and take their
tasks from one to another, which is called UI migration. Our
architecture ICLS is designed based on client/server model. In
ICLS, we use XML documents written in abstract interaction
description language (AIDL) as logical descriptions of UIs, and
introduce one of the semantic web technologies adding the
function of expressing meanings of interactions.

I. INTRODUCTION

Constant improvements of technology have brought a large
variety of platforms (such as mobile phones, PDAs, and
music players including desktop PCs) used for interactive
services, and that has made users’ new demands about the
services. The first is that the users would like to use services
through different devices and modalities depending on their
use contexts. The second is that the users would sometimes
like to change devices and take their tasks from one to another,
which is called user interface (UI) migration [1]. However,
conventional ways of associating devices and services doesn’t
meet the users’ demands because of costs and inadequate
separation between services and devices.

We propose a new solution named interface client/logic
server (ICLS), targeting dialog-based interactive services, sup-
porting UI migration, and offering adaptive UIs for devices and
services. Our architecture aims at services like web applica-
tions, in which some input facilities are used on some dialogs
or pages updated as state transitions. ICLS allows service
developers to declare concrete semantics of interactions on
services in logical descriptions with a machine-readable way,
and realizes the richness of generated UIs on devices. ICLS
has a mechanism of attaching devices to existing session for UI
migration, and when the users do not disconnect the previous
device after attaching new device, they can utilize the two
devices simultaneously.

II. ARCHITECTURE

Our architecture ICLS is designed based on client/server
model. The term interface clients stands for various devices
and platforms in which client applications are implemented,

and the term logic servers stands for various services in which
server applications are implemented. Once devices (clients)
or services (servers) are developed in accordance with the
specification of ICLS, no revisions are required when new
service or device is introduced.

Figure 1 shows an example of the flow of a session between
a client and a server for a reminder service, which manages
items on users’ schedules. A session of a service starts by
a request from a client to a server (1). After that, the client
receives a logical description from the server (2). The client
constructs DOM tree, and generate a UI based on the tree
(3). Logical descriptions are written in the language, abstract
interaction description language (AIDL), which is an XML
application we have developed. After the UI generated on the
client, the user can check his schedule item list with the device
like a portable music player with a small screen and a wheel
control (4). The user notices that he has to enter a new item
into the list, and he operates the small wheel control on the
player to do it. The client changes the DOM tree corresponding
to the user’s UI operations (5). The client sends this DOM
changes as messages to the server (6). The server performs
the service according to the message from the client (7).

During a user is accessing a service through one client with
a session, the user can also try to access the same service
through another client with the existing session. Here, the
DOM trees of these clients are synchronized and updated
simultaneously, and then, a migration is performed when one
of the clients except for the first one is disconnected. When a
client establishes a connection in a session, the server issues
a unique session ID to the client. Using this ID, the user can
access the same session. Figure 2 shows an example of the
flow of a migration process between two clients: client 1, and
client 2. A new client (client 2) obtains a session ID from

Fig. 1. Flow of communication process between a interface client and a logic
server.



Fig. 2. Flow of migration process from the client 1 to the client 2.

the existing client (client 1) (1). A simultaneous session of a
service starts by a request with an ID from a client to a server
(2). After that, the client receives a logical description used
in the session from the server (3). The new client executes
the same UI generation process and sends a user’s operation
to the server (4, 5, 6, 7, 8). After performing the service, the
server broadcasts the received message to another client (9).
The client 1 receives the message, and applies it to its DOM
tree and its UI (10). In the example, the user can access the
server with the same session through a PC, and continue to
type in the content of the item, without restart of the service
or reentering the time data.

III. LOGICAL DESCRIPTION LANGUAGE

In ICLS, we use XML documents written in AIDL as logical
descriptions of UIs, and the documents describe interaction
structures, presentations, and task models in services. AIDL
is an application of XML, and supports the clear separation
of interface clients and logic servers on ICLS, because it is
based on web standards XML and has no device- or modality-
specific contents. In AIDL, arbitrary UI structures and their
current state (meaning the history of users’ operations) are
described as selection acts, which represent essential function
of UI elements in common among devices. Selection acts
consist of three elements: a type (a set of choices), a meaning
(a purpose in a service), and a state (a current state). Selection
acts are grouped with other selection acts and groups, and
compose an interaction tree. A description of AIDL can be
seen as a tree where selection acts, choices, current states,
and groups are expressed as XML nodes.

We introduce one of semantic web technologies, resource
description framework (RDF) for adding a function of ex-
pressing meanings of interactions on certain services in logical
descriptions. In ICLS, RDF classes are used for the meaning
expressions, and the hierarchies of these classes are used for
the inference of meanings. Interface clients can infer meanings
based on the hierarchy of RDF classes applied to the general-

specific relationship of meanings, and they can address more
meanings than ones actually implemented. Meanings in AIDL
descriptions are exploited to specify the purposes of selection
acts and to relate them to client-specific UI elements.

IV. IMPLEMENTATIONS

We implemented ICLS as a framework, which is a class
library written in Java language (JDK 1.6) with a semantic web
library Jena [2]. In order to verify the feasibility of the ICLS
specification and the stability of the communication protocol,
we developed three interface clients and two logic servers.
Three clients are a GUI client, a simulator of mobile device,
and a simulator of voice UI. Two servers are a reminder service
and a remote controller of a virtual appliance.

V. RELATED WORK

As a general solution, a broad range of research was pro-
posed, and almost all of them employ the approach of model-
based UI design which commonly utilize logical descriptions.

Web migratory interface system was proposed in [3], which
targets arbitrary web applications and performs a reverse
engineering of existing web pages in order to obtain their
logical information. This approach has a benefit for specific
web applications, but it does not suit our purpose.

Ubiquitous interactor (UBI) [4] addresses service specific
domains with customization forms in logical descriptions for
developing services without dependence on devices, but it
does not consider migration. Since the customization forms
have no portability among different devices, developers have
to customize their descriptions for each device.

Personal universal controller (PUC) [5], [6] was proposed
for remote controlling various appliances with only PDAs,
but there is no consideration of migration there. PUC uses
smart templates for generating conventional presentations on
some service domains, but the difficulty of defining the smart
templates is not mentioned.

VI. CONCLUSION AND FUTURE WORK

We presented a new solution, interface client/logic server
architecture, which has some limitations but offers simultane-
ous interfaces, and we showed the new application of outcome
on the other research field. As our future work, we have to
remove some limitations imposed on our solution, to consider
exploiting the outcomes of other work, and to evaluation it.

REFERENCES

[1] R. Bandelloni and F. Paternò, “Flexible interface migration,” in IUI 04,
2004, pp. 148–155.

[2] Hewlett-Packard Development Company, L.P., “Jena,” available at
http://jena.sourceforge.net/.

[3] R. Bandelloni, G. Mori, and F. Paternò, “Dynamic generation of migratory
interfaces,” in Proceedings Mobile HCI 2005, 2005.

[4] S. Nylander, M. Bylund, and A. Waern, “The ubiquitous interactor–device
independent access to mobile services,” in CADUI’2004, 2004, pp. 274–
287.

[5] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol, “Generating remote control interfaces for complex
appliances,” in UIST 2002, 2002, pp. 161–170.

[6] J. Nichols, B. A. Myers, and K. Litwack, “Improving automatic interface
generation with smart templates,” in IUI 04, 2004, pp. 286–288.


