
Interaction Description with
Service-Specific Meanings

Takuto YANAGIDA and Hidetoshi NONAKA
Hokkaido University, Japan

CITSA2008



2

1. INTRODUCTION



3

Background

● Computer-based services (appliances and 
applications operated with user interface (UI) 
devices) have pervaded our everyday lives.

● The diversity of the users and the devices has 
increased the users' demand to be able to use 
services through different devices and modalities 
in accordance with certain contexts.



4

Architecture

● Our approach, interface client/logic server (ICLS) 
is a model-based UI architecture, which supports 
UI separation, generation, and migration 
comprehensively [15].

[15] T. Yanagida, H. Nonaka, and M. Kurihara. User-preferred interface design with abstract 
interaction description language. In IEEE International Conference on Systems, Man and 
Cybernetics, 2006.



5

Logic Server

Interface Clients

User interface 
migration

● Users of ICLS-based services possess interface 
clients, and connect them to logic servers when 
they use the services provided by the servers.



6

Description of interaction

● We developed an XML-based language, abstract 
interaction description language (AIDL) for 
describing interactions and their meanings.

● An interface client 
– generates UIs from AIDL documents from a server,
– shows the UI to its user,
– applies the users' operation to the documents, and
– sends messages about it to the server.



7

Design principles

● We adopted the following three principles in 
developing ICLS:
1. We focus on the aspect of input of interactions rather 

than output, and place emphasis on realizing the 
diversity of the interface clients.

2. We did not add any scripting function to AIDL in order 
to retain its specifications simplicity.

3. Since it is difficult to separate the whole UI process 
from service codes, we have separated only device- or 
modality-specific processes as the interface clients.



8

2. DESCRIPTION LANGUAGE



9

AIDL

● Abstract interaction description language (AIDL) 
is used for describing interactions as logical 
description, instead of physical descriptions 
containing UI elements literally.

● It supports the explicit separation of clients and 
servers as it is based on a web standard XML and 
has no device- or modality-specific contents.



10

Figure 2

<aidl:pane>
<aidl:dialog>

<aidl:selection aidl:meaning="http://.../LampPowerState">
<aidl:description aidl:caption="Power" /> 
<aidl:state>http://www.example.com/On</aidl:state> 
<aidl:resources>

<aidl:choice aidl:uri="http://www.example.com/Off">
<aidl:description aidl:caption="Off" /> 

</aidl:choice>
<aidl:choice aidl:uri="http://www.example.com/On">

<aidl:description aidl:caption="On" /> 
</aidl:choice>

</aidl:resources>
</aidl:selection>

</aidl:dialog>
<aidl:knowledge>

<rdf:RDF>
<rdf:Description rdf:about="http://.../LampPowerState">

<rdfs:subClassOf rdf:resource="http://.../PowerState" /> 
</rdf:Description>

</rdf:RDF>
</aidl:knowledge>

</aidl:pane>



11

Use of semantic web

● We developed AIDL for supporting meanings of 
service specific interactions on ICLS.

● Meanings enable ICLS to combine service 
specific functions and device- and modality-
specific UI elements.

● For expressing meanings, we adopted one of the 
semantic web technologies, resource description 
framework (RDF) [7].

[7] E. Miller, R. Swick, and D. Brickley. Resource description framework (RDF), 2004.



12

2.1. Interaction Model

● UI structures and their current states described in 
AIDL are abstracted as selection acts, which 
represent essential function of UI elements.

● A selection act consists of three elements:
– a type (a set of choices),
– a meaning (a purpose of a selection in a service), and
– a state (a current state of selection).



13

● Selection acts are grouped with other selection 
acts and groups, and make an interaction tree.
– In AIDL documents, selection acts and groups are 

expressed as XML nodes, and
– the nodes are added or removed by clients and 

servers.

●Type
●Meaning

State

Selection Act

Group1

Group2 Group3 SA1

S1

SA2

S2

SA3

S3

SA4

S4



14

Type

● A type is one of basic types (Resources, 
Numerals, and Strings) representing a set of 
choices.

● For expressing subtypes, one of constraints:
– enumeration, which enumerates all used choices, 
– range, which specifies maximum and minimum 

values

can be added to a type.



15

State

● A state is one of choices contained in a type, and 
it represents which choice is selected.

● A selection act has its state as a result of users' 
operation or a current state of a logic server.

● The tree represents its own current state with the 
states of its selection acts.



16

Meaning

● A meaning is represented as a URI of an RDF 
class, and help clients to generate UIs which offer 
appropriate affordances for users.

● Meanings are useful in order to increase the 
concreteness of selection acts, or interactions in 
services.



17

none

PowerState

LampPowerState
Specialized

Generalized

● Meanings compose their general-specific 
relationship as a hierarchical structure of RDF 
classes corresponding to the meanings.



18

Spread of meanings

● The more ICLS-based services are developed, the 
more meanings are needed; therefore, it is 
unrealistic to define them all beforehand.

● In ICLS, arbitrary developers can define meanings 
as RDF classes with relations with existing 
meanings.

● We are considering that the consensus of the 
interpretation of meanings will be built according 
to the spread of AIDL.



19

2.2. Interpretation of Meanings

● Interface clients can infer meanings from the 
hierarchy of RDF classes, which offers the 
general-specific relationship of meanings.

● Clients can download and merge external RDF 
documents containing class trees, because RDF 
has the namespace mechanism for the use on 
the web.



20

1. The client searches itself for implementations 
corresponding to the given meaning. 

2.
– When the client finds some implementations, it uses 

one of them and ends this interpretation process.
– When the client cannot find any implementation, it 

downloads some RDF documents about the meaning 
from web or internal database.

3. The client merges some downloaded RDF 
documents and generates one or some class 
hierarchy tree. 



21

4. The client traverses rdfs:subClassOf property 
from the given meaning to its ancestors until it 
reaches an implemented meaning (inference). 

5.
– When the client finds some implemented meanings, 

it uses one of them and ends this process. 
– When the client cannot find any implemented 

meaning, it renders the most general UI without 
meanings.



22

Implementation of meaning

● Meanings are just labels for the concepts shared 
by developers, and client developers need to 
determine which meanings they implement.

● With the inference mechanism, clients can 
handle meanings that have not been actually 
implemented.



23

<aidl:pane>
<aidl:dialog>

<aidl:selection aidl:meaning="http://.../LampPowerState">
<aidl:description aidl:caption="Power" /> 
<aidl:state>http://www.example.com/On</aidl:state> 
<aidl:resources>

<aidl:choice aidl:uri="http://www.example.com/Off">
<aidl:description aidl:caption="Off" /> 

</aidl:choice>
<aidl:choice aidl:uri="http://www.example.com/On">

<aidl:description aidl:caption="On" /> 
</aidl:choice>

</aidl:resources>
</aidl:selection>

</aidl:dialog>
<aidl:knowledge>

<rdf:RDF>
<rdf:Description rdf:about="http://.../LampPowerState">

<rdfs:subClassOf rdf:resource="http://.../PowerState" /> 
</rdf:Description>

</rdf:RDF>
</aidl:knowledge>

</aidl:pane>

Example

● In the example (fig. 2), there exists a selection 
act representing a power state of a desk lamp 
(LampPowerState).
– The document 

contains a RDF 
document describing 
LampPowerState is 
sub class of 
PowerState.

Fig. 2



24

● From this description, 
a) A GUI-based interface client can 

generate two radio buttons without 
the meaning.

b) It can also generate a custom-
designed button with the meaning if it 
has the implementation.

c) A portable client like a music player 
can use its hardware switch as the 
representation of a meaning 
PowerState inferred from the given 
meaning.



25

3. IMPLEMENTATION



26

Framework

● We implemented ICLS as a framework, which is 
a class library written in Java (JDK 1.6) with a 
semantic web library Jena [5].

● Although various protocols for sending text are 
available as a low protocol, we adopted TCP/IP 
as the default.

● We developed three interface clients and two 
logic servers (a reminder service and a remote 
controller of a virtual appliance).

[5] Hewlett-Packard Development Company, L.P. Jena – a semantic web framework for java.



27

Clients and servers

a) The GUI client adopts Swing as a GUI toolkit, and 
it generates GUI dialog boxes based on AIDL 
documents.

a)



28

b)

c)

b) The mobile client has a small screen and a 
wheel control, and offers hierarchical menu UIs. 

c) The client of voice UI simulator expresses voice 
communication with strings.



29

4. RELATED WORK



30

Model-based UI development

● For UI generations, generators are required to 
resolve a mapping between abstracted 
expressions and concrete elements of UIs.

● There is a lot of related studies, and this mapping 
is common among them involved in model-based 
UI design [2, 4, 13].

[2] S. Berti, F. Correani, G. Mori, F. Patern`o, and C. Santoro. TERESA: A transformation-based 
environment for designing and developing multi-device interfaces. In CHI 2004, 2004.
[4] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based techniques to the 
development of UIs for mobile computers. In IUI ’01, 2001.
[13] J. M. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent automatic 
interaction objects selection. In CHI ’93, 1993.



31

Ubiquitous interactor

● Ubiquitous interactor (UBI) [10] is a method of 
developing services without depending on 
devices through describing interactions.

● UBI offers customization forms for controlling 
presentations, but developers have to customize 
the forms for each device because the forms 
have no portability.

[10] S. Nylander, M. Bylund, and A. Waern. The ubiquitous interactor–device independent access 
to mobile services. In CADUI’2004, 2004.



32

Personal universal controller

● In personal universal controller (PUC) [8, 9], users 
can remote control various appliances with a 
PDA where the system is running.

● It offers smart templates for generating 
conventional presentations on some service 
domains, but how to define the templates 
beforehand is not mentioned.

[8] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, and M. Pignol. 
Generating remote control interfaces for complex appliances. In UIST 2002, 2002.
[9] J. Nichols, B. A. Myers, and K. Litwack. Improving automatic interface generation with smart 
templates. In IUI 04, 2004.



33

UIML

● User interface markup language (UIML) [1] is an 
XML based language for the purpose of 
describing interfaces independently of specific 
platforms.

● It offers no runtime support which addresses 
automatic UI generations.

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster. UIML: An 
appliance-independent XML user interface language. In The eighth international World Wide Web 
conference, 1999.



34

5. CONCLUSION AND FUTURE WORK



35

Conclusion

● We have proposed the abstract interaction 
description language (AIDL) for describing 
interactions for our UI architecture, interface 
client/logic server (ICLS).

● It utilizes RDF for expressing meanings of 
interactions and describing service-specific 
interactions, and it enables clients to perform 
meaning inference for flexible UI generations.



36

Future work

● We have to establish generation schemes for 
each modality.

● We are also considering exploiting outcomes in 
the area of transcodings, which handles 
conversion of the presentation of output 
information.


	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36

