
Flexible Widget Layout with Fuzzy
Constraint Satisfaction

SMCia08

Takuto YANAGIDA and Hidetoshi NONAKA
Hokkaido University, Japan

2

I. INTRODUCTION

3

Background

● Widget layout performed by computers is one of
the most important challenges [1] for automatic
generation of graphical user interfaces (GUIs).

● The layout has a significant impact on the
usability of GUI applications and services, and it
decides how easy to use them.

[1] S. Lok and S. Feiner, “A survey of automated layout techniques for information presentations,”
in SmartGraphics ’01, 2001.

4

● Widget layout problem
– is the process of deciding the positions and sizes of

widgets, such as list boxes, radio buttons, and panels
for grouping them.

–

5

Model-based user interface design

● In the field of model-based user interface (UI)
design [2, 3], systems generate GUIs from logical
descriptions, which do not specify which widgets
to be used.

● Hence, selecting widgets is needed, and widget
layout is more complicated.

[2] J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying model-based techniques to the
development of UIs for mobile computers,” in IUI ’01, 2001.
[3] J. M. Vanderdonckt and F. Bodart, “Encapsulating knowledge for intelligent automatic
interaction objects selection,” in CHI ’93, 1993.

6

Flexible widget layout

● Automatic GUI generation from logical
descriptions requires both
– deciding which widget and their alignments are used,
– completing the layout in a certain time especially

when the system generates them in run time.

Flexible widget layout (FWL)

7

● For FWL, a system searches combinations of
widgets and their alignments selecting from their
candidates.

● This feature enables a system to select small
widgets with little usability for small screens, or
large ones with enough usability for large screens.

?

?

?

8

Point of our proposal

● We formulate FWL problem as a fuzzy constraint
satisfaction problem (FCSP) [12] in the field of
artificial intelligence.

● We represent the desirability of the selections
straightforward as fuzzy constraints; therefore,
we can utilize existing techniques of FCSP.

● Our system generates GUI dialog boxes from UI
models of logical descriptions.

[12] Z. Ruttkay, “Fuzzy constraint satisfaction,” in Proceedings 1st IEEE Conference on
Evolutionary Computing, Orlando, 1994, pp. 542–547.

9

II. FLEXIBLE WIDGET LAYOUT PROBLEM

10

FWL problem

● Appropriate widgets and their alignments are
selected from sets of candidates.

● A set of widget candidates corresponds to a
certain UI function, and every widget in the set
represents the same function.

● FWL is executed based on a UI model or its
descriptions, which contains UI functions and
their groupings.

11

● The complexity of FWL is caused by that widgets
with the trade-off between their desirability α and
the ease of layout involving their dimensions.

αddlb < αrbs

easy not easy>

12

User interface model

● As a UI model generally expressed in logical
descriptions, in this paper, we adopt selection act
model [5].

● In this model, UI functions are represented as
selection acts with some parameters, and they
are grouped to make a tree graph.

[5] T. Yanagida, H. Nonaka, and M. Kurihara, “User-preferred interface design with abstract
interaction description language,” in IEEE International Conference on Systems, Man and
Cybernetics, 2006.

13

● Selection act si consists of:

– list of choices Li

– number of selected items ei

– importance ti

– flag whether its choices have opposite meanings oi

14

● All selection acts are grouped and make a tree
graph of UI functions, whose root is a group, and
it will correspond to a dialog box to be generated.

● Selection acts and the groups can have a caption
string for their explanations.

s2 s3 s4

s1Group2 Group3

Group1

caption

caption

15

Used widgets

● Since they are commonly adopted by many
existing toolkits, we use the subset of widgets.
– We defined the desirability (usability) 0 ≤ α ≤ 1

corresponding to the types of widgets.

αddlb < αlb_min < αlb_max < αrbs = αcbs < αcb

* there is a range of desirability for list box

Drop down list box List box Radio buttons Check boxes Check box

16

Relation between model and widgets

● A Selection act is mapped to the corresponding
set of widget candidates Wi, and it will be
expressed with widget wi ∈ Wi.

Check box

Si
List box

Radio buttons
Drop down

list box

Wi
A selection act

...

...

17

● Widget candidates are chosen based on selection
acts (TABLE 1).

TABLE 1

18

● Each instance of widget wi has a minimum size
(width: wwi, height: hwi) uniquely defined by
parameters of the corresponding selection act si.

19

Relation between model and positioning

● A group in UI models and captions are
represented as array containers and labeled
containers respectively.

● We express the caption of a selection act as a
labeled container wrapping one element,
because it also has positioning candidates.

20

● A container is mapped to a set of positioning
candidates Pj, and it will be expressed with
positioning pj ∈ Pj.

Groupj

Vertical
alignment Horizontal

alignment Tab pages

PjA group or caption

captionj
Left side

Upper side

or

21

● An array container has three positioning
candidates, and it aligns its child elements
(widgets and containers).

● Desirabilities for the positioning candidates are
defined.

Child Element 1

CE2

CE3

CE1 CE2 CE3 CE1

a) Vertical alignment b) Horizontal alignment c) Tab pages

Pj =

αac_v = αac_h > αac_t

22

● A Labeled container contains only one child
element and has two candidates: the left side
label and the upper side label.

● The desirabilities for the positioning candidates
are also defined.

Child
element

Caption:

Child
element

Caption:

a) Left side b) Upper side

Pj =

αlc_l > αlc_u

23

● Each positioning candidate pj has

– a minimum size (width: wpj, height: hpj) uniquely
defined by the minimum sizes of its child elements
and the length of caption if it is a labeled container.

– maximum sizes for its children
(width: Wpj, 1, ..., height: Hpj, 1, ...)

24

Possibility of doing layout

● The minimum sizes of widgets and containers
decide whether it is possible to do a layout
defined by selections from candidates.

● Solving FWL problem is finding the best
combination of the candidates, which is layout-
possible and has the highest desirability.

25

● Possibility of layout
– means whether or not the child elements of a

container can be placed in its rectangle when given a
combination of candidates.

(maximum size for childn ≥ minimum size of childn)

● Desirability of layout
– means how good usability the layout offers, and
– is the minimum of desirabilities of selected

candidates.

26

III. FORMULATION

27

A. Fuzzy constraint satisfaction

● Fuzzy constraint satisfaction problem (FCSP)
– is a branch of combinatorial search problems
– consists of

● a set of variables X = {x1, ... , xq}

● a set of domains D = {d1, ... , dq}

● a set of constraints C = {c1, ... , cr}

– can be represented by a graph, where nodes and
edges are corresponding to variables and constraints.

x1 x2

c1

28

x1

x2

x4

x5

x3

x6

c7

c1 c4

c2

c6
c5

c3

c8

d1

d2

d3

d5

d6d4

Binary
constraints

A unary
constraint

d1, 2, 3, 4, 5, 6 = {1, 2, 3, 4}

● ch donates membership function μRh(v[Sh])
– Sh: scope (variables related to ch)
– v: assignment for all variables
– A membership value is called a satisfaction degree.

29

x1

x2

x4

x5

x3

x6

0.2
0.4

0.9

0.3

0.7

1.0

0.3

0.8

1

2

4

1

33

● A solution of a FCSP
– The satisfaction degree of a whole FCSP is defined as

a minimum of all constraint satisfaction degrees.
Cmin(v) = min(μRh(v[Sh]))

– If Cmin(v) > 0, v is a solution of the FCSP.

This assignment
is a solution.
Its satisfaction
degree is 0.2.

30

B. Flexible widget layout with FCSP

● We introduce the framework of FCSP, formulate
FWL problems as FCSPs.
– We use unary fuzzy constraints for expressing the

desirability α of widgets.
– We represent the parental relationship among

widgets with binary crisp constraints, which are
particular cases of fuzzy constraints.

31

Definition of variables

● Variables X = XW ∪ XP ∪ XD express widget
candidates, positioning candidates, and dialogs
respectively.

● Values of variables xWi ∈ XW, xPj ∈ XP, and xD ∈ XD
are selected candidates.

32

FCSP
● Variables
● Domains
● Constraints

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

33

Definition of domains

● The values of domains are tuples according to
each variable type.
– A domain for widget variable xWi

Minimum size of widget wi

An example:
Dxw1 = {<check_box , 210, 18>,

<radio_buttons , 210, 36>,
<drop_down_list_box, 210, 18>}

34

– A domain for positioning variable xPi

– A domain for dialog variable xD

Minimum size of positioning pj

Size of the dialog

Permissible maximum size for each child

35

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3 dxW4

FCSP
● Variables
● Domains
● Constraints

36

Definition of constraints

● Each variable except for a dialog variable is
connected to a unary constraint for expressing its
desirability.

Satisfaction degree = desirability of candidate
● Two variables of a container and its child are

connected to a binary constraint for expressing a
inclusion relation.

Is the permissible size for a child larger than its minimum size ?

37

dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3
dxW4

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

FCSP
● Variables
● Domains
● Constraints

38

IV. IMPLEMENTATION

39

Three phases for FWL

● We implemented an experimental system for
FWL, which consists of three phases:
A) creating a FCSP from a UI model,

B) solving the problem with an algorithm, and

C) performing actual layout based on the result of the
algorithm.

40

A. Creating problem phase

● A constraint graph is generated from a given UI
model.

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3
dxW4

41

● The minimum sizes of widgets (the values of the
domains of the variables) are decided by the
parameters of the selection acts and TABLE 2.

TABLE 2

Calculate minimum sizes

42

● The minimum sizes of containers are calculated
by the minimum sizes of their child elements.
– Array container

– Labeled container

vertical alignment

horizontal alignment

tab pages

left side

upper side

43

Calculate maximum sizes

● The permissible maximum sizes of child
elements are calculated with a dialog size.
– Array container

– Labeled container

vertical

horizontal

tab

left

upper

44

B. Solving problem phase

● The system iterates steps of solving the
generated FCSP with the forward checking
algorithm looking for a better solution.

● The system prunes the domains according to a
worst satisfaction degree.

45

● Step 1
– The system makes a satisfaction degree set by

collecting possible degrees from all unary constraints.
● Step 2

– The system chooses a maximum from the set, and
sets it as the worst satisfaction degree.

– It prunes values of the domains whose satisfaction
degree of the unary constraints are less than the
worst satisfaction degree.

46

● Step 3
– The system solves the FCSP with the forward

checking algorithm, which is extended for handling
fuzzy problems.

● Step 4
– If the system can find a solution, it moves to the next

phase in order to do an actual layout;
– Otherwise, it moves back to the step 2, or it stops in

failure if no value remains in the set.

47

Pruning

● The pruning of domains are done before applying
the algorithm for solving the problem rapidly.

● The forward checking algorithm guarantees that
it finds a solution if one exists, but it has a
disadvantage that it requires large time.

● Hence, it is effective to reduce the scale of the
problem by the pruning.

48

C. Layout with result phase

● Based on an assignments of variables, the
system decides positions and sizes of the
selected widgets, and it places them.

* Dialog boxes generated automatically from the same description

49

V. DISCUSSION

50

Speed of doing layout

● We have confirmed that it can finish performing
the layout of the example fast enough for GUI
generation.
– 250 msec (without pruning, more than 50000 msec)
– Environment:

● Pentium M 1.10 GHz CPU
● 512 MB memory
● Windows XP Professional edition
● Java 6 SE

51

How to define variables

● In the early stage, we tried to formulate FWL
problems with variables expressing widgets sizes
and positions, but we were not able to obtain
enough speed for solving it.

● That is because the variables have large
domains, and the scale of the problem is
enlarged.

52

VI. CONCLUSION AND FUTURE WORK

53

Conclusion

● We have formulated the layout problem
accompanied by widget selections, named the
flexible widget layout problem, as a fuzzy
constraint satisfaction problem.

● We have offered the solution solving it in a
practical time for users.

54

Future work

● We need to
– add some layout rules based on GUI guidelines,
– evaluate the relation between problem scales and

solving times, and
– consider other algorithms for FCSPs.

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 53
	ページ 54

