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I. INTRODUCTION
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Background

● Widget layout performed by computers is one of 
the most important challenges [1] for automatic 
generation of graphical user interfaces (GUIs).

● The layout has a significant impact on the 
usability of GUI applications and services, and it 
decides how easy to use them.

[1] S. Lok and S. Feiner, “A survey of automated layout techniques for information presentations,” 
in SmartGraphics ’01, 2001.
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● Widget layout problem
– is the process of deciding the positions and sizes of 

widgets, such as list boxes, radio buttons, and panels 
for grouping them.

–
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Model-based user interface design

● In the field of model-based user interface (UI) 
design [2, 3], systems generate GUIs from logical 
descriptions, which do not specify which widgets 
to be used.

● Hence, selecting widgets is needed, and widget 
layout is more complicated.

[2] J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying model-based techniques to the 
development of UIs for mobile computers,” in IUI ’01, 2001.
[3] J. M. Vanderdonckt and F. Bodart, “Encapsulating knowledge for intelligent automatic 
interaction objects selection,” in CHI ’93, 1993.
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Flexible widget layout

● Automatic GUI generation from logical 
descriptions requires both
– deciding which widget and their alignments are used,
– completing the layout in a certain time especially 

when the system generates them in run time.

Flexible widget layout (FWL)
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● For FWL, a system searches combinations of 
widgets and their alignments selecting from their 
candidates.

● This feature enables a system to select small 
widgets with little usability for small screens, or 
large ones with enough usability for large screens.

?

?

?
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Point of our proposal

● We formulate FWL problem as a fuzzy constraint 
satisfaction problem (FCSP) [12] in the field of 
artificial intelligence.

● We represent the desirability of the selections 
straightforward as fuzzy constraints; therefore, 
we can utilize existing techniques of FCSP.

● Our system generates GUI dialog boxes from UI 
models of logical descriptions.

[12] Z. Ruttkay, “Fuzzy constraint satisfaction,” in Proceedings 1st IEEE Conference on 
Evolutionary Computing, Orlando, 1994, pp. 542–547.
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II. FLEXIBLE WIDGET LAYOUT PROBLEM
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FWL problem

● Appropriate widgets and their alignments are 
selected from sets of candidates.

● A set of widget candidates corresponds to a 
certain UI function, and every widget in the set 
represents the same function. 

● FWL is executed based on a UI model or its 
descriptions, which contains UI functions and 
their groupings.
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● The complexity of FWL is caused by that widgets 
with the trade-off between their desirability α and 
the ease of layout involving their dimensions.

αddlb         <          αrbs

easy not easy>
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User interface model

● As a UI model generally expressed in logical 
descriptions, in this paper, we adopt selection act 
model [5].

● In this model, UI functions are represented as 
selection acts with some parameters, and they 
are grouped to make a tree graph.

[5] T. Yanagida, H. Nonaka, and M. Kurihara, “User-preferred interface design with abstract 
interaction description language,” in IEEE International Conference on Systems, Man and 
Cybernetics, 2006.
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● Selection act si consists of:

– list of choices Li

– number of selected items ei

– importance ti

– flag whether its choices have opposite meanings oi
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● All selection acts are grouped and make a tree 
graph of UI functions, whose root is a group, and 
it will correspond to a dialog box to be generated.

● Selection acts and the groups can have a caption 
string for their explanations.

s2 s3 s4

s1Group2 Group3

Group1

caption

caption
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Used widgets

● Since they are commonly adopted by many 
existing toolkits, we use the subset of widgets.
– We defined the desirability (usability) 0 ≤ α ≤ 1 

corresponding to the types of widgets.

αddlb      < αlb_min < αlb_max <      αrbs      =      αcbs      <      αcb

* there is a range of desirability for list box

Drop down list box List box Radio buttons Check boxes Check box
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Relation between model and widgets

● A Selection act is mapped to the corresponding 
set of widget candidates Wi, and it will be 
expressed with widget wi ∈ Wi.

Check box

Si
List box

Radio buttons
Drop down

list box

Wi
A selection act

...

...
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● Widget candidates are chosen based on selection 
acts (TABLE 1).

TABLE 1
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● Each instance of widget wi has a minimum size 
(width: wwi, height: hwi) uniquely defined by 
parameters of the corresponding selection act si.
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Relation between model and positioning

● A group in UI models and captions are 
represented as array containers and labeled 
containers respectively.

● We express the caption of a selection act as a 
labeled container wrapping one element, 
because it also has positioning candidates.
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● A container is mapped to a set of positioning 
candidates Pj, and it will be expressed with 
positioning pj ∈ Pj.

Groupj

Vertical
alignment Horizontal

alignment Tab pages

PjA group or caption

captionj
Left side

Upper side

or
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● An array container has three positioning 
candidates, and it aligns its child elements 
(widgets and containers).

● Desirabilities for the positioning candidates are 
defined.

Child Element 1

CE2

CE3

CE1 CE2 CE3 CE1

a) Vertical alignment b) Horizontal alignment c) Tab pages

Pj =

αac_v           =           αac_h           >           αac_t
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● A Labeled container contains only one child 
element and has two candidates: the left side 
label and the upper side label.

● The desirabilities for the positioning candidates 
are also defined.

Child
element

Caption:

Child
element

Caption:

a) Left side b) Upper side

Pj =

αlc_l                 >           αlc_u
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● Each positioning candidate pj has

– a minimum size (width: wpj, height: hpj) uniquely 
defined by the minimum sizes of its child elements 
and the length of caption if it is a labeled container.

– maximum sizes for its children 
(width: Wpj, 1, ..., height: Hpj, 1, ...)
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Possibility of doing layout

● The minimum sizes of widgets and containers 
decide whether it is possible to do a layout 
defined by selections from candidates.

● Solving FWL problem is finding the best 
combination of the candidates, which is layout-
possible and has the highest desirability.
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● Possibility of layout
– means whether or not the child elements of a 

container can be placed in its rectangle when given a 
combination of candidates.

(maximum size for childn ≥ minimum size of childn)

● Desirability of layout
– means how good usability the layout offers, and
– is the minimum of desirabilities of selected 

candidates.
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III. FORMULATION
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A. Fuzzy constraint satisfaction

● Fuzzy constraint satisfaction problem (FCSP)
– is a branch of combinatorial search problems
– consists of

● a set of variables X = {x1, ... , xq}

● a set of domains D = {d1, ... , dq}

● a set of constraints C = {c1, ... , cr}

– can be represented by a graph, where nodes and 
edges are corresponding to variables and constraints.

x1 x2

c1
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x1

x2

x4

x5

x3

x6

c7

c1 c4

c2

c6
c5

c3

c8

d1

d2

d3

d5

d6d4

Binary
constraints

A unary
constraint

d1, 2, 3, 4, 5, 6 = {1, 2, 3, 4}

● ch donates membership function μRh(v[Sh])
– Sh: scope (variables related to ch)
– v: assignment for all variables
– A membership value is called a satisfaction degree.
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● A solution of a FCSP
– The satisfaction degree of a whole FCSP is defined as 

a minimum of all constraint satisfaction degrees.
Cmin(v) = min(μRh(v[Sh]))

– If Cmin(v) > 0, v is a solution of the FCSP.

This assignment 
is a solution.
Its satisfaction 
degree is 0.2.
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B. Flexible widget layout with FCSP

● We introduce the framework of FCSP, formulate 
FWL problems as FCSPs.
– We use unary fuzzy constraints for expressing the 

desirability α of widgets.
– We represent the parental relationship among 

widgets with binary crisp constraints, which are 
particular cases of fuzzy constraints.
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Definition of variables

● Variables X = XW ∪ XP ∪ XD express widget 
candidates, positioning candidates, and dialogs 
respectively.

● Values of variables xWi ∈ XW, xPj ∈ XP, and xD ∈ XD 
are selected candidates.



32

FCSP
● Variables
● Domains
● Constraints

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4
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Definition of domains

● The values of domains are tuples according to 
each variable type.
– A domain for widget variable xWi

Minimum size of widget wi

An example:
Dxw1 = {<check_box                     ,  210,  18>, 

<radio_buttons            ,  210,  36>, 
<drop_down_list_box,  210,  18>}
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– A domain for positioning variable xPi

– A domain for dialog variable xD

Minimum size of positioning pj

Size of the dialog

Permissible maximum size for each child
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xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3 dxW4

FCSP
● Variables
● Domains
● Constraints
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Definition of constraints

● Each variable except for a dialog variable is 
connected to a unary constraint for expressing its 
desirability.

Satisfaction degree = desirability of candidate
● Two variables of a container and its child are 

connected to a binary constraint for expressing a 
inclusion relation.

Is the permissible size for a child larger than its minimum size ?
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dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3
dxW4

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

FCSP
● Variables
● Domains
● Constraints
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IV. IMPLEMENTATION
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Three phases for FWL

● We implemented an experimental system for 
FWL, which consists of three phases:
A) creating a FCSP from a UI model,

B) solving the problem with an algorithm, and 

C) performing actual layout based on the result of the 
algorithm.
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A. Creating problem phase

● A constraint graph is generated from a given UI 
model.

xD

xP1

xP2 xP3

xP5xP4

xW1

xW2 xW3 xW4

dxD

dxP1

dxP3

dxP5

dxP2

dxP4

dxW1

dxW2 dxW3
dxW4
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● The minimum sizes of widgets (the values of the 
domains of the variables) are decided by the 
parameters of the selection acts and TABLE 2.

TABLE 2

Calculate minimum sizes
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● The minimum sizes of containers are calculated 
by the minimum sizes of their child elements.
– Array container

– Labeled container

vertical alignment

horizontal alignment

tab pages

left side

upper side
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Calculate maximum sizes

● The permissible maximum sizes of child 
elements are calculated with a dialog size.
– Array container

– Labeled container

vertical

horizontal

tab

left

upper
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B. Solving problem phase

● The system iterates steps of solving the 
generated FCSP with the forward checking 
algorithm looking for a better solution.

● The system prunes the domains according to a 
worst satisfaction degree.
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● Step 1
– The system makes a satisfaction degree set by 

collecting possible degrees from all unary constraints.
● Step 2

– The system chooses a maximum from the set, and 
sets it as the worst satisfaction degree.

– It prunes values of the domains whose satisfaction 
degree of the unary constraints are less than the 
worst satisfaction degree.
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● Step 3
– The system solves the FCSP with the forward 

checking algorithm, which is extended for handling 
fuzzy problems.

● Step 4
– If the system can find a solution, it moves to the next 

phase in order to do an actual layout; 
– Otherwise, it moves back to the step 2, or it stops in 

failure if no value remains in the set.
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Pruning

● The pruning of domains are done before applying 
the algorithm for solving the problem rapidly.

● The forward checking algorithm guarantees that 
it finds a solution if one exists, but it has a 
disadvantage that it requires large time.

● Hence, it is effective to reduce the scale of the 
problem by the pruning.
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C. Layout with result phase

● Based on an assignments of variables, the 
system decides positions and sizes of the 
selected widgets, and it places them.

* Dialog boxes generated automatically from the same description
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V. DISCUSSION
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Speed of doing layout

● We have confirmed that it can finish performing 
the layout of the example fast enough for GUI 
generation.
– 250 msec (without pruning, more than 50000 msec)
– Environment:

● Pentium M 1.10 GHz CPU
● 512 MB memory
● Windows XP Professional edition
● Java 6 SE
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How to define variables

● In the early stage, we tried to formulate FWL 
problems with variables expressing widgets sizes 
and positions, but we were not able to obtain 
enough speed for solving it.

● That is because the variables have large 
domains, and the scale of the problem is 
enlarged.
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VI. CONCLUSION AND FUTURE WORK
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Conclusion

● We have formulated the layout problem 
accompanied by widget selections, named the 
flexible widget layout problem, as a fuzzy 
constraint satisfaction problem.

● We have offered the solution solving it in a 
practical time for users.
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Future work

● We need to
– add some layout rules based on GUI guidelines, 
– evaluate the relation between problem scales and 

solving times, and 
– consider other algorithms for FCSPs.
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