
Flexible Widget Layout with Fuzzy
Constraint Satisfaction

Takuto Yanagida, Hidetoshi Nonaka
Graduate School of Information Science and Technology

Hokkaido University
Sapporo 060–0814, Japan

Email: {takty, nonaka}@main.ist.hokudai.ac.jp

Abstract—We propose a new solution for the flexible widget
layout (FWL) problem, formulating this problem as a fuzzy
constraint satisfaction problem (FCSP) in the field of artificial
intelligence. Widget layout performed by computers is one of the
most important challenges for automatic generation of graphical
user interfaces (GUIs). In the field of model-based user interface
design, the widget layout is more complicated because the process
of selecting widgets is needed. The FWL, we named, is the au-
tomatic GUI generation, which requires both (1) deciding which
widget types and their alignments are used and (2) completing
the layout in a certain time especially when the system generates
them in run time. Our system automatically selects appropriate
widgets and lays them out in certain rectangles. We formulate the
desirability of the selection straightforward as fuzzy constraints;
therefore, we can utilize existing technique of FCSP for the FWL.
We divide the layout process into three phases, and using an
existing FCSP algorithm, we realize the layout in a short time
enough not to keep users of the generated GUI waiting.

I. INTRODUCTION

Widget layout performed by computers is one of the most
important challenges [1] for automatic generation of graphical
user interfaces (GUIs). We mean widget layout as the process
of determining the positions and the sizes of widgets, such as
list boxes, radio buttons, and panels for grouping them. The
layout has a significant impact on the usability of applications
and services based on GUIs, and it determines the ease of
tasks which can be accomplished on them.

In the field of model-based user interface (UI) design [2],
[3], the widget layout is more complicated because the process
of selecting widgets is needed. Many researches in the field
proposed the systems which generate GUIs automatically from
logical descriptions through layout processes. The systems
realize the diversity of generated UIs with the logical descrip-
tions, which specify the common UI functions independently
of specific devices and platforms, for example [4], [5]. Namely,
the descriptions have no specification of widgets; hence, the
systems need to select widgets according to the UI functions
before they place widgets. However, the researches handle
mainly how to realize various devices and platforms rather
than how to execute layout. The ubiquitous interactor [6]
shows the results of GUI generations from logical descriptions,
where we can see their system does layouts, but the authors
do not mention it. The personal universal controller [7] was
proposed for remote controlling various appliances with PDAs.
A rule-based layout algorithm is explained, but it is dependent

on specific application domain and does not handle the widget
selection corresponding to the same functions. In XWeb [8],
both the widget selection and layout are mentioned, but the
proposed system does not handle their combination.

The automatic GUI generation from logical descriptions
requires both (1) deciding which widget types and their
alignments are used and (2) completing the layout in a certain
time especially when the system generates them in run time.
We call it flexible widget layout (FWL). The systems for the
FWL search the combination of widgets and their alignments
selecting from their candidates. This feature can expand the
possibilities of layout because a system can select small
widgets with less usability for small screens, or large widgets
with enough usability for large screens. However, when the
generation processes are performed in run time of service use,
the systems need to finish the layout in real time. Existing
layout managers may seem to be solutions. In these days,
many GUIs are developed with toolkit such as Swing [9],
Windows Forms [10], and Qt [11] including some layout
managers. The layout managers perform in run time, but they
only decide the positions and sizes of widgets, and they do
not handle the selection of suitable widgets.

In this paper, we formulate the FWL problem as a fuzzy
constraint satisfaction problem (FCSP) [12], which is an
extension of constraint satisfaction problem (CSP), in the
field of artificial intelligence. Our system automatically selects
appropriate widgets according to logical descriptions and lays
them out in certain rectangles. In layout processes, deciding
the sizes and the positions of widgets is also performed
in existing layout managers, but before that, our system
decides which kind of widget and positioning (alignment) is
appropriate for the layout. We formulate the desirability of
the selection straightforward as fuzzy constraints; therefore,
we can utilize existing technique of FCSP for the FWL. We
divide the layout process into three phases, and using an
existing FCSP algorithm, we realize the layout in a short time
enough not to keep users of the generated GUI waiting. We
claim that our approach can handle adequately complicated
real applications, without depending on specific domains, and
complete the layout in real time.

In the following sections, we first formulate the FWL
problem, next, we show an implementations, discuss some
consideration for it, and lastly we conclude our work.

II. FLEXIBLE WIDGET LAYOUT PROBLEM

For the FWL, a system needs to execute both selecting
appropriate widgets from sets of widget candidates and putting
them in a rectangle of a dialog box. A set of widget candidates
corresponds to a certain UI function, and every widget in the
set represents the same function. The FWL is executed based
on a UI model or its descriptions, which contains UI functions
and their groupings. A widget selection process has two steps.
First, a system resolves the mappings between a UI function
and a set of widget candidates, and second, it selects actually
used widgets from the mapped sets in terms of the dimensions
and usability of the widgets. After that, the system places all
selected widgets in a dialog box with no overlapping but gaps
among them, and it makes groupings of related widgets in the
same rectangles. The complexity of FWL is caused by that
widgets have the tradeoff between their usability and the ease
of layout involving their dimensions. For example, we can use
a list box or a drop down list box for expressing the function
of selecting one item from an item list. From the standpoint
of usability, since users can view the many items at once, the
former is better, but it needs larger area and may not be placed
in a small dialog box (or a small screen).

All widgets used here are rectangular and have presentations
corresponding to their types of widgets. We defined the desir-
ability α ∈ [0, 1] also corresponding to the types of widgets. In
this paper, since they are commonly adopted by many existing
toolkits, we use the following subset of widgets W : a check
box, radio buttons, a drop down list box, check boxes, and a
list box. We distinguish between a check box and check boxes
because they are used for different functions. The desirability
of each widget type is defined as αcb , αrbs , αddlb , αcbs , and
αlb respectively. Especially, the desirability of a list box is
defined according to the rate of its visible items; therefore, it
has the range αlb min ≤ αlb ≤ αlb max . The desirability is
ordered in terms of the usability of the widgets. We defined
the order of the desirability as αddlb < αlb min < αlb max <
αrbs = αcbs < αcb referring [13], [14]. The widgets have the
reverse order in terms of their dimensions.

As a UI model generally expressed in logical descriptions,
in this paper, we adopt selection act model, where UI functions
are represented as selection acts with some parameters, and
they are grouped to make a tree graph (Fig. 1). A selection
act is represented as a 4-tuple: si = 〈Li, ei, ti, oi〉, where Li

stands for the list of choices, and |Li| stands for the number
of choices. ei ∈ {single,multiple} is the selection size,
ti ∈ [1, 10] is the importance, and oi ∈ {true,false}
denotes the flag meaning whether its choices are opposite
when they have two choices. Group elements make groupings
of relevant selection acts and group elements as child elements,
and they make both parental relationship between itself and
its grouped elements and sibling relationship among them.
All selection acts are grouped and make a tree graph of UI
functions, whose root is a group, and this tree will correspond
to a dialog box to be generated. In addition, selection acts and
the groups can have a caption string for their explanations.

Fig. 1. Selection act UI model.

TABLE I
WIDGET CANDIDATES

Selection size ei Item size |Li| Is opposite oi Candidates Wi

single |Li| = 2 true Check box,
Radio buttons,
Drop down list box

false Radio buttons,
Drop down list box

|Li| < 6 - Radio buttons,
Drop down list box

|Li| ≥ 6 - List box,
Drop down list box

multiple - - Check boxes,
List box

Selection acts are categorized into some groups and mapped
to the corresponding sets of widget candidates Wi ⊂ W , and
selection act si is expressed with widget wi ∈ Wi selected
from its set of widget candidates (Table I). We created the
widget candidates table also referring [13], [14], but it is
possible to apply users’ preferences there. Based on the table,
for example, widget candidates Wi corresponding to si, where
ei = single and |Li| = 5, are determined as a set of a
drop down list box and radio buttons (see Table I). In the
layout process, it is decided which one of the candidates are
used. Each instance of widget wi has uniquely a minimum
size (width: wwi , height: hwi), which is defined by parameters
(|Li|, the maximum width of item strings of Li, and oi) of the
corresponding selection act si.

A group in UI models and captions of selection acts
are represented as array containers and labeled containers
respectively. An array container has three positioning candi-
dates: vertical alignment, horizontal alignment, and tab pages
(Fig. 2), and it expresses a grouping of its child elements
(widgets and containers). We express the caption of a selection
act as a labeled container wrapping the element, because it
also has the positioning candidates. The container contains
only one child element and has two candidates: the left side
label and the upper side label (Fig. 3). On the other hand,
the caption of a group is expressed as the label fixed on the
upper side of an array container; hence it has no candidates.
The containers are mapped to a set of positioning candidates
Pj , and each group and caption of selection acts is expressed
with positioning pj ∈ Pj . Each positioning candidate pj

has uniquely a minimum size (width: wpj , height: hpj). The
minimum sizes of the array containers are defined by the

Fig. 2. Three positioning candidates of array container.

Fig. 3. Two positioning candidates of labeled container.

minimum sizes of its child elements. The minimum sizes of
the labeled containers are calculated based on the length of
caption and the child element size. We also define desirability
αac v , αac h , and αac t for the positioning candidates (vertical
alignment, horizontal alignment, and tab pages) of the array
containers; αlc l , and αlc u for the candidates (left side label
and upper side label) of the labeled containers. Especially, the
root group of a UI model is expressed as a dialog, which has
one child element, and it is given a fixed client area size.

Based on the minimum sizes of widgets and containers,
a system gives a decision whether it is possible to execute
the layout which is defined by the selections from widget
candidates and positioning candidates, where the possibility
means that the child elements of a container can be placed
in its rectangle. We mention the condition expression for that
possibility in the next section.

III. FORMULATION

A. Fuzzy constraint satisfaction

A FCSP is an extension of a traditional CSP. It consists of
a finite set of variables X = {xg}q

g=1, a finite set of domains
of values D = {dg}q

g=1 associated with the each variable, and
a finite set of constraints C = {ch}r

h=1. ch denotes a fuzzy
relation µRh on a subset Sh(Sh ⊂ X) of X . Sh is called the
scope of Rh. If the size of Sh is 1 or 2, then the relation is
called a unary or binary relation respectively. Fuzzy relations
Rh have their membership functions defined by

µRh :
∏

xg∈Sh

Dg → [0, 1].

In other words, the membership value is defined by an as-
signment vSh

to the variables in scope Sh of constraint ch.
It is called the satisfaction degree. Since a FCSP requires
the satisfaction of the fuzzy conjunction of all the fuzzy
constraints, the satisfaction degree of the whole FCSP is
defined as the minimum satisfaction degree as follows:

Cmin(v) = min
1≤h≤r

(µRh(vSh
)).

The structure of CSPs and FCSPs can be represented by a
constraint graph, where nodes and edges of the graph are
corresponding to variables and constraints. If a constraint is
binary, the two nodes in its scope are connected by an edge.
If a constraint is unary, the one node in its scope is connected
by an edge as a self-loop. We do not handle constraints which
are ternary or of higher order in this paper.

We introduce the framework of FCSP, formulate FWL
problems as FCSPs, and represent the desirability of widgets
with satisfaction degrees of fuzzy constraints. We use unary
fuzzy constraints for expressing the desirability α of widgets.
Fuzzy constraints enable us to represent naturally the gradual
rules of widget desirability. We represent the parental rela-
tionship among widgets with binary crisp constraints, which
are particular cases of fuzzy constraints. Using two types
of constraints, we formulate FWL problems, which can be
applied some existing algorithms for solving FCSP.

B. Flexible widget layout with FCSP

Variables X = XW ∪ XP ∪ XD express the widget candi-
dates, the positioning candidates, and the dialogs respectively.
The values of variables xWi ∈ XW , xPj ∈ XP , and xD ∈ XD

correspond to which candidates are selected. In FWL, parental
relationships are expressed as binary constraints between the
variables, and a tree structural constraint graph is constructed.

The values of domains are tuples according to each variable
type and are used for that constraints calculate their satisfac-
tion degrees. The domain of widget candidate variable xWi is
a set of the tuples consisting of widget wi and its minimum
size (wwi , hwi) as follows:

DxWi
=

{
〈wi, wwi , hwi〉 | wi ∈ Wi

}
.

The domain of positioning candidate variable xPj is a set
of the tuples consisting of positioning pj , its minimum size
(wwi , hwi), and permissible maximum sizes (width: Wpj,k

,
height: Hpj,k

) for the child elements as follows:

DxPj
=

{
〈pj ,wpj ,hpj ,Mpj 〉 | pj ∈ Pj

}
,

Mpj = 〈Wpj,1 , Hpj,1 ,Wpj,2 ,Hpj,2 , . . . , Wpj,KPj
, Hpj,KPj

〉,

where pj,k is the kth child element of container Pj , and KPj

is the number of the child elements of Pj . Containers have
different sizes of children; therefore, the sizes of tuples of their
domains are also different. The domains of dialog variable xD

have a value, which is a tuple containing a given size of client
area of the dialog (Wd, Hd) as the permissible maximum size
for its child element as follows:

DxD
=

{
〈Wd, Hd〉

}
.

Each variable except for a dialog variable is connected
by a unary constraint for expressing the desirability, and
arbitrary two variables are connected by a binary constraint for
expressing a parental relationship. Unary constraints cdesWi

,
cdesPj

∈ CdesWP denote the desirability of the value of its
scope xWi , xPj as their satisfaction degrees. If the value
of xWi is v1 = 〈wi,wwi ,hwi〉, and the value of xPj is

v2 = 〈pj , wpj , hpj ,Mpj 〉, the satisfaction degree of cdesWi
,

cdesPj
is calculated as follows:

cdesWi
(v1) = des(wi), cdesPj

(v2) = des(pj),

where des is the projection from the widget candidates
and the positioning candidates to their desirability α. A
binary constraint cconPj,k

∈ CconP denotes whether con-
tainer Pj can conclude its children Pj,k in its rectangle
area on the scope xPj and xPj,k

. If the value of xPj is
v1 = 〈pj ,wpj ,hpj , 〈. . . , Wpj,k

, Hpj,k
, . . .〉〉 and the value of

its kth child element xPj,k
is v2 = 〈pj,k, wpj,k

, hpj,k
〉, the

satisfaction degree of cconPj,k
is calculated as follows:

cconPj,k
(v1, v2) =

{
1 if wpj,k

≤ Wpj,k
and hpj,k

≤ Hpj,k

0 otherwise

IV. IMPLEMENTATION

We implemented an experimental system for FWL, which
consists of three phases: (1) creating a FCSP from a UI
model, (2) solving of the problem with an algorithm, and (3)
performing actual layout based on the result of the algorithm
(Fig. 4). In the current implementation, we need to program the
mapping from the elements of a UI model to the corresponding
sets of the widget candidates and the positioning candidates
as input sources for the system. The desirability α∗ of both
the widget candidates and the positioning candidates are given
empirically assuming typical applications.

A. Creating problem phase

In the first phase, a constraint graph is generated from a
given UI model, and this graph is a tree structure having one-
to-one correspondence to the model. Groups and selection acts
in a UI model are seen as each corresponding typed variable
(nodes) in the graph, and the parental relationships are seen as
composition constraints there. All variables except for a dialog
variable have unary constraints for expressing the desirability
of the current assignments of the variables.

The minimum sizes of widgets, which are the values of the
domains of the variables, are determined by the parameters of
the based selection acts, and the minimum sizes of containers
are determined by the minimum sizes of the child elements
of the containers. The minimum widths of widgets are the
sum of the width of one of its items, which has the longest
string length, and the widths of the operational parts such as
a vertical scroll bar, a radio button, and a check box. The
minimum heights are defined by the widget type, their item
size, and the item height item h (Table II). The minimum size
of an array container (wacj , hacj) is calculated based on the
minimum sizes of its child elements (wacj ,k

, hacj ,k
) as follows

(where gaps among child widgets and tabs space are omitted):

wacj =


max(wacj ,k

) vertically alignment∑
wacj ,k

horizontal alignment
max(wacj ,k

) tab pages

TABLE II
MINIMUM WIDGET HEIGHTS

Widget Minimum height (without edges)

Check box item h

Drop down list box
List box min(|L|, 4) item h

Radio buttons |L| item h

Check boxes

hacj =


∑

hacj ,k
vertically alignment

max(hacj ,k
) horizontal alignment

max(hacj ,k
) tab pages

The minimum size of a labeled container (wlcj , hlcj) is
calculated based on the size of its label (lwlcj , lhlcj) and
the minimum size of its one child element (wlcj,1 , hlcj,1) as
follows (where gaps are omitted):

wlcj =

{
wlcj,1 + lwlcj left side
max(wlcj,1 , lwlcj) upper side

hlcj =

{
max(hlcj,1 , lhlcj) left side
hlcj,1 + lhlcj

upper side

The permissible maximum sizes of child elements, which
are entries of the value of the domains of container variables,
are determined from the dialog to the descendant containers in
turn, based on the given dialog size. The permissible maximum
size of a dialog is the client area size of the dialog, which
is given fixed size. The permissible maximum size for child
elements (Wacj,k

, Hacj,k
) of array container acj is calculated

based on the maximum size of the container (Wacj , Hacj)
given by its parent container and all of the minimum sizes of
its child elements (wacj,k

, hacj,k
) as follows:

Wacj,k
=


Wacj

vertically alignment
Wacj −

∑
l 6=k wacj,l

horizontal alignment
Wacj tab pages

Hacj,k
=


Hacj −

∑
l 6=k hacj,l

vertically alignment
Hacj horizontal alignment
Hacj tab pages

The permissible maximum size for the child element (Wlcj,1 ,
Hlcj,1) of labeled container lcj is calculated based on the
maximum size of the container (Wlcj , Hlcj) given by its parent
container, and its label size (lwlcj , lhlcj) as follows:

Wlcj,1 =

{
Wlcj − lwlcj left side
Wlcj

upper side

Hlcj,1 =

{
Hlcj left side
Hlcj − lhlcj upper side

Fig. 4. Phases of performing flexible widget layout.

B. Solving problem phase

In the second phase, the system iterates solving the FCSP
generated in the previous phase using the forward checking
algorithm in order to search better solution, or the assignments
of the variables. The system prunes the domains according to
a worst satisfaction degree.

The precise description of the process of solving the FCSP is
as follows. (Step 1) Before the iteration, the system prepares
satisfaction degree set A by collecting possible satisfaction
degrees from all unary constraints. Since the all unary con-
straints express desirability α of each widget candidates and
positioning candidates, A is a discrete set. (Step 2) The
system chooses the maximum one a from A as the worst
satisfaction degree and removes it. It prunes worse values of
the domains than a based on the unary constraints. At this
step, the minimum heights in the domains of widgets in the
list box state are reset as follows:

hlbi = |Li| item h
(

1 − αlb max − a

αlb max − αlb min

) 1
ti

.

(Step 3) The system solves the FCSP with forward checking
algorithm, which is extended for handling fuzzy problems
improving the worst constraint satisfaction degree. (Step 4)
If the system can find a solution, or an assignment for the
variables, it moves to the next phase in order to perform an
actual layout; otherwise, it moves back to the step 2. If there
is no value in A, the system stops in failure.

For solving the problem rapidly, the system prunes the
domains based on the given worst constraint satisfaction
degrees before applying the algorithm. The forward checking
algorithm searches systematically through the search space of
the possible assignments of values to the variables until it finds
a solution. It is guaranteed to find a solution if one exists but
has the disadvantage that it requires large cost of time; hence,
pruning the domains and reducing the scale of the problem is
effective. Since possible satisfaction degrees of the constraints
are finite discrete sets, the system can prune the domains. We
mention the effect of the pruning in the next section.

C. Layout with result phase

In the last phase, based on the assignments of the variables,
or the selected candidates, the system decides the positions
and the sizes of the selected widgets, and then it places them.

In FWL, the variables express the selections of both of widget
candidates and positioning candidates; therefore, the solution
of a FCSP is not a layout. The system generates widgets
adopted in the solution; then it sets their concrete positions
(pixels) and sizes (pixels) based on the values of container
variables. In our implementation, the resize of the dialog box
is re-flected in the relayout of the widgets (Fig. 5).

V. DISCUSSION

We need to evaluate our system in detail, but for now,
we have confirmed that it can finish performing the layout
of the example (Fig. 5) fast enough for GUI generation. We
implemented the system with Java 6 on a notebook computer
(Pentium M 1.10 GHz CPU, 512 MB main memory, and
Windows XP Professional edition). The system can finish the
layout of the example within 250 msec. We also executed the
system with the same layout without pruning and got the result
that it takes more than 50000 msec. That shows the pruning
is effective in the system.

In early phases of our research, we tried expressing a
FWL problem with the variables corresponding to widgets
sizes and positions, but we were not able to obtain enough
speed for solving it. That is because these variables expressing
positions and sizes have large domains, and the scale of the
problem is enlarged. For the large scale problem, systematic
search algorithms take long time; also, some stochastic search
algorithms, we tested, is not efficient because the problem has
large plateau, which is a flat part of the search space.

We need to program the input of the system in the current
implementation, and we are going to apply another research
of UI architecture and UI description language by us [4], [5].
We omitted here, but the UI model of selection acts is origi-
nally adopted in our abstract interaction description language
(AIDL), which is a UI specification language independent of
specific devices and modalities. Hence, we have a plan of
developing the new version of the system, which receives
AIDL document as description of UI model and generates
GUI performing its layout.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have formulized the layout problem accom-
panied by widget selection, named the flexible widget layout
problem, as a fuzzy CSP, and we have offered the solution

Fig. 5. Results of flexible widget layout from the same UI model with different dialog sizes.

solving it in a practical time for the users. The widgets used in
our implementation are a typical subset of ones in existing GUI
toolkits; hence, the problem which we have addressed is just a
small size one. Besides, the constraints in the problem are used
for only parent-child compositions, desirability of widgets, and
placements of captions. These limitations, however, are posed
just in the current implementation, but not in our approach
itself. The selection of widgets before their layout is general,
and it is not specific for the model-based GUI generations,
because designers also need to select widgets when they
execute layout by hand. The points of our work are that we
have utilized the achievements in the FCSP domain of artificial
intelligence field, where our method is one of their practical
applications, and we have offered the method which can solve
the layout in a certain time.

As our future work, we need to add some layout rules
based on GUI guidelines, to evaluate the relation between
problem scales and solving times, and to consider other
algorithms for FCSPs. For example, we can add constraints
between sibling widgets for keeping the same types and states
among them, which does not exist in the current imple-
mentation. We are considering extracting GUI dialog boxes
from existing applications and reconstructing them with our
method, and we might be able to evaluate its availability.
In the current implementation, we use the forward checking
algorithm, which is systematic approach, but our method is
not limited this algorithm. Formulated as FCSP, the layout
problem allows us to use suboptimal results; therefore, we can
also consider adopting of stochastic approaches such as fuzzy
GENET (FGENET) [15], [16], and SRS [17] as alternatives
of algorithms for FCSP other than the forward checking.

REFERENCES

[1] S. Lok and S. Feiner, “A survey of automated layout techniques for
information presentations,” in SmartGraphics ’01, 2001.

[2] J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying model-based
techniques to the development of UIs for mobile computers,” in IUI ’01,
2001.

[3] J. M. Vanderdonckt and F. Bodart, “Encapsulating knowledge for
intelligent automatic interaction objects selection,” in CHI ’93, 1993.

[4] T. Yanagida and H. Nonaka, “Interface migration using abstract inter-
action description,” in Technical Report of the Institute of Electronics,
Information and Communication Engineers SS2007-24, vol. 107, no.
176, 2007, pp. 49–52, (in Japanese).

[5] T. Yanagida, H. Nonaka, and M. Kurihara, “User-preferred interface
design with abstract interaction description language,” in IEEE Interna-
tional Conference on Systems, Man and Cybernetics, 2006.

[6] S. Nylander, M. Bylund, and A. Waern, “The ubiquitous interactor–
device independent access to mobile services,” in CADUI’2004, 2004,
pp. 274–287.

[7] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol, “Generating remote control interfaces for complex
appliances,” in UIST 2002, 2002, pp. 161–170.

[8] D. R. Olsen, S. Jefferies, S. T. Nielsen, W. Moyes, and P. Fredrickson,
“Cross-modal interaction using XWeb,” in UIST 2000, 2000, pp. 191–
200.

[9] Sun Microsystems, Inc., “JDK 6 swing (java foundation classes),” avail-
able at http://java.sun.com/javase/6/docs/technotes/guides/swing/index.
html.

[10] Microsoft Corporation, “Windows forms,” available at http://msdn2.
microsoft.com/en-us/netframework/aa497342.aspx.

[11] Trolltech ASA, “Qt,” available at http://trolltech.com/products/qt/.
[12] Z. Ruttkay, “Fuzzy constraint satisfaction,” in Proceedings 1st IEEE

Conference on Evolutionary Computing, Orlando, 1994, pp. 542–547.
[13] S. L. Fowler, GUI Design Handbook. Mcgraw-Hill Companies, Inc.,

1997.
[14] Apple Inc., “Apple human interface guidelines,” 2008, available at

http://developer.apple.com/documentation/UserExperience/Conceptual/
OSXHIGuidelines/OSXHIGuidelines.pdf.

[15] E. Tsang and C. Wang, A Generic Neural Network Approach for
Constraint Satisfaction Problems. Springer-Verlag, 1992, pp. 12–22.

[16] J. H. Y. Wong and H. fung Leung, “Extending GENET to solve
fuzzy constraint satisfaction problems,” in AAAI ’98/IAAI ’98: Pro-
ceedings of the fifteenth national/10th conference on Artificial intelli-
gence/Innovative applications of artificial intelligence. Menlo Park,
CA, USA: American Association for Artificial Intelligence, 1998, pp.
380–385.

[17] Y. Sudo and M. Kurihara, “Spread-repair-shrink: A hybrid algorithm for
solving fuzzy constraint satisfaction problems,” in IEEE International
Conference on Fuzzy Systems (WCCI 2006), 2006.

