
Architecture for Migratory Adaptive 
User Interfaces

Takuto YANAGIDA and Hidetoshi NONAKA
Hokkaido University, Japan

CIT2008



2

1. Introduction



3

Background

● Constant improvements in technology have 
spawned a variety of platforms used for 
interactive services, and that has created users' 
new demands.
1. To be able to use services through different devices 

and modalities in accordance with certain contexts.

2. To be able to change devices and take tasks from 
one device to another (user interface migration [3]).

[3] R. Bandelloni and F. Paternò. Flexible interface migration. In IUI 04, pages 148–155, 2004.



4

Problems

● Conventional ways of associating devices and 
services does not meet the users' demands 
because of costs and inadequate separation 
between services and devices.

● Developing multiple versions for each platform is 
expensive for the developers in terms of time, 
money, and maintaining the version consistency.



5

Point of our proposal

● We improve interface client/logic server (ICLS) 
[18], which supports UI migration, and offers 
adaptive UIs for devices and services.

● The target of ICLS is dialog-based interactive 
services, in which some input facilities are used 
on some dialogs updated as state transitions.

[18] T. Yanagida, H. Nonaka, and M. Kurihara. User-preferred interface design with abstract interaction 
description language. In IEEE International Conference on Systems, Man and Cybernetics, 2006.



6

Logic Server

Interface Clients

User interface 
migration

● Users of ICLS-based services possess interface 
clients, and connect them to logic servers when 
they use the services provided by the servers.



7

● ICLS has a mechanism for attaching clients to 
existing sessions for UI migration.

● When the users do not disconnect the previous 
client after attaching a new client, they can utilize 
the two clients simultaneously.



8

2. Architecture



9

2.1. Clients and servers

● An example of the flow of a session between a 
client and a server for a reminder service, which 
manages users’ scheduled tasks (7 steps).

Client Server



10

Client Server

(1) request

(2) send message (logical description)

1. A service session starts with a request from a 
client to a server.

2. After the session starts, the client receives a 
logical description from the server.
– Logical descriptions are written in abstract interaction 

description language (AIDL), an application of XML.



11

● A server and its clients in session maintain the 
same structured DOM* tree of XML.

● A DOM tree constructed with AIDL contains not 
only a UI structure but also a current state of a 
generated UI.

* the DOM (document object model): a standard object model for representing XML.



12

Client Server

(3) generate UI

3. The client constructs a DOM tree, and generates 
a UI based on the tree. 

4. The user operates the client. 

5. The client changes the DOM corresponding to 
the user’s operations.

(5) apply

(4)
operate UI



13

6. The client sends these DOM changes as 
messages to the server.

7. The server performs the service according to the 
message from the client.

Client Server

(7)
perform service

(6) send message (DOM operation)



14

● The user can check his scheduled task list 
using a device like a music player which has a 
small screen and a wheel control, on the train, 
on the way to his office.

● The user can set the time limit 
for a task item easily using 
the wheel control, but he 
might feel it’s a nuisance to 
fill the content field of the 
item using the same control.

Date:
11 July 2008

Content:

^



15

Migration and simultaneous use

● During the time a user is accessing a service 
through one client with a session, the user can 
access the same service through another client.

Client 2

Client 1 Server

Existing

session



16

Client 2

(2) request with ID

Client 1 Server

(1) send ID

1. A new client (client 2) obtains a session ID from 
the existing client (client 1).

2. A simultaneous service session starts by a 
request with an ID from client 2 to the server.



17

● DOM trees constructed with logical descriptions 
contain not only UI structures but also current 
states of generated UIs.

● Receiving a DOM tree that is being used by 
another client means receiving the whole 
information about all of the UIs in a session.



18

3. Client 2 receives from the server a logical 
description used in the session.

4.- 8. Client 2 does the same UI generation process 
and sends the user’s operation to the server.

Client 2

Client 2 Server

(4) generate UI

(8)
perform service

(7) send message
(DOM operation)

(6) apply

(3) send message (logical description)
(5)

operate UI



19

9. The server broadcasts the received message to 
another client.

10. Client 1 receives the message, and applies it to 
its DOM tree and UI.

Client 2

Client 2 Server

(9) send message (DOM operation)(10) apply



20

● Accessing the server with the same session 
through a PC, the user can continue to type in 
the content of the item, without having to 
restart of the service or reenter the time data.

CIT2008



21

2.2. Protocol

● Interface clients and logic servers communicate 
with a protocol, tree structure synchronize 
protocol (TSSP), where changes in DOM trees are 
serialized as messages.

● The protocol provides the way to send whole or 
partial trees as documents written in AIDL in 
order to synchronize two or more DOM trees in 
each client and server.



22

Message

● Messages exchanged between a client and a 
server are categorized into two types:
– Just sending entire AIDL documents, and
– Serialized change operations consist of

● a command (INSERT, ERACE, or REPLACE), 
● an XML path (such as “/group[0]/selection[1]”) ,
● a piece of an AIDL document inserted or replaced.



23

Attach to session

● Attaching an existing session is performed by 
passing a session ID to a server.

● When a client sends a request with an ID, the 
server returns the DOM tree of the session 
identified with the ID as an AIDL document.

● Clients have to communicate with each other to 
obtain this ID from other clients.



24

Collision of messages

● When multiple clients exist in the same session, 
the priority of their messages retains the 
consistency of their DOM trees.

● When a server receives messages conflicting 
among clients and/or the server,
– the state of the server takes priority over the clients',
– the message that arrives first takes priority.



25

3. Logical description language



26

AIDL

● Abstract interaction description language (AIDL) 
is an application of XML, we developed, describes 
interaction structures, presentations, and task 
models of services.

● It supports the clear separation of interface 
clients and logic servers, as XML is a web 
standard, and has no device- or modality-specific 
contents.



27

<aidl:pane>
<aidl:dialog>

<aidl:selection aidl:meaning="http://.../LampPowerState">
<aidl:description aidl:caption="Power" /> 
<aidl:state>http://www.example.com/On</aidl:state> 
<aidl:resources>

<aidl:choice aidl:uri="http://www.example.com/Off">
<aidl:description aidl:caption="Off" /> 

</aidl:choice>
<aidl:choice aidl:uri="http://www.example.com/On">

<aidl:description aidl:caption="On" /> 
</aidl:choice>

</aidl:resources>
</aidl:selection>

</aidl:dialog>
<aidl:knowledge>

<rdf:RDF>
<rdf:Description rdf:about="http://.../LampPowerState">

<rdfs:subClassOf rdf:resource="http://.../PowerState" /> 
</rdf:Description>

</rdf:RDF>
</aidl:knowledge>

</aidl:pane>



28

Interaction model

● UI structures and their current states described in 
AIDL are abstracted as selection acts, which 
represent the essential function of UI elements.

● A selection act consists of three elements:
– a type (a set of choices),
– a meaning (a purpose of a selection in a service), and
– a state (a current state of selection).



29

● Selection acts are grouped with other selection 
acts and groups, and make an interaction tree.
– In AIDL documents, selection acts and groups are 

expressed as XML nodes, and
– the nodes are added or removed by clients and 

servers.

●Type
●Meaning

State

Selection Act

Group1

Group2 Group3 SA1

S1

SA2

S2

SA3

S3

SA4

S4



30

4. Implementations



31

Framework

● We implemented ICLS as a framework, which is 
a class library written in Java (JDK 1.6) with a 
semantic web library Jena [8].

● Although various protocols for sending text are 
available as a low protocol, we adopted TCP/IP 
as a default.

● We developed three interface clients and two 
logic servers (a reminder service and a remote 
controller of a virtual appliance).

[8] Hewlett-Packard Development Company, L.P. Jena.



32

Clients and servers

a) The GUI client adopts Swing as a GUI toolkit, and 
it generates GUI dialog boxes based on AIDL 
documents.

a)



33

b)

c)

b) The mobile client has a small screen and a 
wheel control, and offers hierarchical menu UIs. 

c) The client of voice UI simulator expresses voice 
communication with strings.



34

5. Discussion



35

Design principles

● We adopted following three design principles:
– Since it is difficult to separate the whole UI process 

from service codes, we have separated only device- or 
modality-specific processes as the interface clients.

– We intend to have the clients utilize their resources 
for the generation of various UIs, and

– We did not add any scripting function to the 
architecture in order to retain its design simplicity.



36

Possibility of various UI

● In the above implementations, we have adopted 
tentative rules for generating UIs from logical 
descriptions, but at least for the GUI client, we 
have provided a specific solution.



37

6. Related work



38

Model-based UI design

● As a general solution, a broad range of research 
has been proposed, and almost all of it employs 
a model-based UI design [7, 16], which 
commonly utilizes logical descriptions.

[7] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based techniques to the 
development of UIs for mobile computers. In IUI ’01, 2001.
[16] J. M. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent automatic 
interaction objects selection. In CHI ’93, 1993.



39

Flexible interface migration

● A web migratory interface system has been 
proposed in [3].
– It targets arbitrary web applications and performs a 

reverse engineering of existing web pages in order to 
obtain their logical information.

– This approach has the benefit of being able to handle 
web applications, but it does not suit our purpose.

[3] R. Bandelloni and F. Paternò. Flexible interface migration. In IUI 04, pages 148–155, 2004.



40

7. Conclusion and future work



41

Conclusion

● We presented interface client/logic server (ICLS) 
architecture, which offers migratory and 
simultaneous interfaces.

● Simultaneous interfaces as the extension of 
migratory interfaces is a new technique on the UI 
fields we presented.



42

Future work

● The current implementation of GUI interface 
client uses some layout managers implemented 
in Swing, and it has no intelligent mechanism for 
widget layout.

● Here, we are exploiting achievements in the field 
of artificial intelligence, especially constraint 
satisfaction problems (CSPs), and prototyping 
some clients.


	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42

