
Architecture for Migratory Adaptive User Interfaces

Takuto Yanagida, Hidetoshi Nonaka
Graduate School of Information Science and Technology

Hokkaido University
Sapporo, 060–0814, Japan

{takty, nonaka}@main.ist.hokudai.ac.jp

Abstract

We propose a new solution named interface client/logic
server (ICLS), targeting dialog-based interactive services,
supporting user interface (UI) migration, and offering a-
daptive UIs for devices and services. Constant improve-
ments of technology have brought a large variety of plat-
forms, and that has made users’ new demands about the
services. The first is that the users would like to use ser-
vices through different devices and modalities depending on
their use contexts. The second is that the users would some-
times like to change devices and take their tasks from one
to another, which is called UI migration. Our architecture
ICLS is designed based on client/server model. In ICLS, we
use XML documents written in abstract interaction descrip-
tion language (AIDL) as logical descriptions of UIs, and
introduce one of the semantic web technologies adding the
function of expressing meanings of interactions.

1. Introduction

Constant improvements of technology have brought a
large variety of platforms (such as mobile phones, PDAs,
and music players including desktop PCs) used for interac-
tive services, and that has made users’ new demands about
the services. The first is that the users would like to use ser-
vices through different devices and modalities depending on
their use contexts. Depending on whether users are in their
homes or cars, the devices which they would like to use for
checking their schedules must be different. The second is
that the users would sometimes like to change devices and
take their tasks from one device to another, which is called
user interface (UI) migration [3]. When the users change
their devices, they wouldn’t like to retrace the same process
of clicking the same buttons and entering the same contents.

Conventional ways of associating devices and services
does not meet the users’ demands because of costs and in-
adequate separation between services and devices. Simply

Figure 1. Interface client/logic server (ICLS)
architecture.

developing multiple versions for each platform respectively
is expensive for the developers in terms of time, money, and
maintaining the versions consistent. Hence, in spite of the
diversity of the devices and platforms, users cannot utilize
them effectively for accessing the services. Recently web
browsers were implemented in many mobile devices, and
the advent of web applications on them seemed to be a so-
lution. They need, however, specific versions for each plat-
form, and they are often accessed selectively with different
URI, because HTML and other web architectures still as-
sume their target platform.

In this paper, we propose a new solution named inter-
face client/logic server (ICLS) (Figure 1), targeting dialog-
based interactive services, supporting UI migration, and of-
fering adaptive UIs for devices and services [17, 18]. Our
architecture aims at services like web applications, in which
some input facilities (such as buttons, check boxes, and text
fields) are used on some dialogs or pages updated as state
transitions. It is a kind of model-based UI architecture pro-
posed in a large amount of related work, and this architec-
ture uses some logical descriptions of user tasks, interfaces,
or interactions that the architecture supports. These logical
descriptions are highly abstracted from specific devices and
platforms, and realize separated and independent develop-



ments of devices and services. ICLS allows service devel-
opers to declare concrete semantics of interactions on ser-
vices in logical descriptions with a machine-readable way,
and realizes the richness of generated UIs on devices. For
example, by specifying the meanings such as date or power
state in a description, appropriate widgets like a calendar or
a power switch can be generated if they are supported by
the device. ICLS has a mechanism for attaching devices to
existing session for UI migration, and when the users do not
disconnect the previous device after attaching new device,
they can utilize the two devices simultaneously. It is use-
ful when we are in multi-device environments like homes
or offices and the devices have different characteristics.

In this paper, we first discuss our architecture, next,
we show some implementations, discuss related work, and
lastly we conclude our work.

2. The interface client/logic server

Our architecture ICLS is designed based on client/server
model (Figure 2). The term interface clients stands for var-
ious devices and platforms in which client applications are
implemented, and the term logic servers stands for vari-
ous services in which server applications are implemented.
Both applications of interface clients and logic servers are
assumed to conform to the specifications of ICLS, which is
mentioned later. Once devices or services are developed in
accordance with the specification of ICLS, no revisions are
required when new service or device is introduced.

2.1. Clients and servers

Figure 3 shows an example of the flow of a session be-
tween a client and a server for a reminder service, which
manages users’ scheduled tasks. The numbers with paren-
theses in the figure correspond to the numbers of the fol-
lowing scenario: A session of a service starts by a request
from a client to a server (1). After the session starts, the
client receives a logical description from the server (2).The
client constructs DOM tree, and generate a UI based on the
tree (3). Logical descriptions are written in the language,
abstract interaction description language (AIDL), which

Figure 2. Concept of ICLS.

Figure 3. Flow of communication process be-
tween a interface client and a logic server.

Figure 4. Flow of migration process from the
client 1 to the client 2.

is an XML application we have developed. After the UI
was generated on the client, the user can check his sched-
uled task list with the device like a portable music player
which offers a small screen and a wheel control (4), on the
way to his office on a train. At this time, the user notices
that he has to add a new task to the list, and he operates
the small wheel control on the player to do it. The client
changes the DOM tree corresponding to the user’s UI oper-
ations (5). The client sends this DOM changes as messages
to the server (6). The server performs the service according
to the message from the client (7).

During a user is accessing a service through one client
with a session, the user can also try to access the same ser-
vice through another client with the existing session. Here,
the DOM trees of these clients are synchronized and up-
dated simultaneously, and then, a migration is performed
when the first client is disconnected. When a client estab-
lishes a connection in a session, the server issues a unique
session ID to the client. Using this ID, the user can access



the same session. Figure 4 shows an example of the flow of
a migration process between two clients: client 1, and client
2. A new client (client 2) obtains a session ID from the ex-
isting client (client 1) (1). A simultaneous session of a ser-
vice starts by a request with an ID from a client to a server
(2). After that, the client receives a logical description used
in the session from the server (3). The new client executes
the same UI generation process and sends a user’s operation
to the server (4, 5, 6, 7, 8). After performing the service, the
server broadcasts the received message to another client (9).
The client 1 receives the message, and applies it to the DOM
tree and UI of the client (10). In the example of a reminder
service, the user can set the limit time for a task item easily
with the wheel control of the player, but he might feel it’s a
pain to fill the content field of the item with the same con-
trol. Accessing the server with the same session through a
PC, the user can continue to type in the content of the item,
without restart of the service or reentering the time data.

It is possible for clients to attaching existing sessions,
because servers and clients on session maintain the same
structured DOM tree. The DOM trees constructed with log-
ical descriptions contain not only UI structures but also cur-
rent states of generated UIs. Receiving a DOM tree which
is used by another client means receiving the whole infor-
mation about UIs in a session.

2.2. Protocol

Interface clients and logic servers communicate with a
protocol, tree structure synchronize protocol (TSSP), where
changes of DOM trees are serialized as messages. Clients
and a server connected in a session have the same DOM
trees extracted from AIDL documents respectively. The
protocol provides the way to send whole or partial trees as
documents written in AIDL in order to synchronize two or
more DOM trees in each client and server. This synchro-
nization realizes the virtual sharing of one DOM tree, which
is changed by the clients and the server. Note that we do
not specify the low protocol under TSSP, and many existing
protocols which can send text messages are available.

Messages exchanged between a client and a server are
categorized into two types: serialized change operations
with one of three commands and an XML path, and just
sending a whole AIDL documents. Changes on a DOM
tree corresponding to a user’s UI operations are sent to a
server as messages which consist of some tuples, whose
elements are one of three commands (INSERT, ERACE,
or REPLACE), an XML path (such as “/group[0]/se-
lection[1]”), and a piece of AIDL document. The
server received the messages applies them to its DOM tree,
and broadcast them to the other clients if it has multiple con-
nections. A server expresses the state transitions of UIs by
sending whole of new descriptions in AIDL to a client.

Figure 5. Sharing of session using with ses-
sion ID.

Attaching an existing session for simultaneous or migra-
tory interfaces is performed by passing session IDs given a
certain way when a client is connected to a server (Figure 5).
When a client is connected with an ID, the server sends the
DOM tree of session identified with the ID as a document
written in AIDL to the client. Clients also have to commu-
nicate each other for obtaining this ID from another client
for the connections with the session IDs.

When multiple clients exist in the same session, the
priority of their messages retains the consistency of their
DOM trees. When a server receives messages which have
some conflicts among clients or between the server and the
clients, the state in the server takes priority of them in the
clients, and the message arriving earliest takes priority of
other messages.

3. Logical description language

In ICLS, we use XML documents written in AIDL as
logical descriptions of UIs, and the documents describe in-
teraction structures, presentations, and task models in ser-
vices (Figure 6). AIDL is an application of XML, and
supports the clear separation of interface clients and logic
servers on ICLS, because it is based on web standards XML
and has no device- or modality-specific contents. We have
defined AIDL with a RELAX NG [6] schema (and we are
preparing to release it to the public).

We introduce one of semantic web technologies, re-
source description framework (RDF) [10] for adding a func-
tion of expressing meanings of interactions on certain ser-
vices in logical descriptions. The easiest way for addressing
multi-devices and multi-platforms is limiting, abstracting,
and aggregating functionalities of devices, as is pointed out
in some previous researches, which I will mention in Sec-
tion 6. We also adopts the same approach; however, with
the expression of interaction meanings in services, our sys-
tem has an advantage of offering the possibility for com-
bining service specific functionalities and device specific
ones. In ICLS, RDF classes are exploited for the meaning



Figure 6. Simple example of description in
AIDL.

expressions, and the hierarchies of these classes are utilized
for the inference of meanings. RDF is a standardized web
technology, independent of specific platforms and venders,
and designed for addressing opened information (meaning
information not expected in advance). ICLS inherits such
characteristics of RDF.

In AIDL, arbitrary UI structures and their current state
(in other words, the history of users’ operations) are de-
scribed as selection acts, which represent essential function
of UI elements in common among various devices, plat-
forms, and modalities. A selection act is a tuple which con-
sists of three elements: a type (a set of choices), a meaning
(a purpose in a service), and a state (a current state). For
instance, the operation of the power state of a desk lamp is
represented as a selection act composed of the set of two
choices (ON and OFF), current state ON, and its meaning
LampPowerState. Selection acts are grouped with other
selection acts and groups, and compose an interaction tree.
A description of AIDL can be seen as a tree where selec-
tion acts, choices, current states, and groups are expressed
as XML nodes. Each selection node has its own selection
state node as a child node, and thus, the current state of the
tree graph is represented with all of the state nodes. For
interface clients, the nodes expressing the structure of in-
teractions are immutable (meaning they are not modified),
and other nodes for expressing the current states are muta-
ble (meaning they are modifiable), while for logic servers,
all nodes are mutable.

Interface clients can infer meanings based on the hier-
archy of RDF classes applied to the general-specific rela-
tionship of the meanings, and they can address more mean-
ings than ones actually implemented. Class hierarchy can
be constructed with merged RDF graphs which clients ob-
tain from servers and the web. RDF has the namespace

Figure 7. Example of meaning hierarchy and
corresponding UIs.

mechanism on the web, and those graphs can be merged
ensuring their consistency. Meanings in AIDL documents
are exploited to specify the purposes of selection acts and
to relate the selection acts to client-specific UI elements. In
other words, interface clients pick out appropriate UI ele-
ments using the meanings. RDF describes knowledge about
UIs in a machine-readable way.

4. Implementations

We implemented ICLS as a framework, which is a class
library written in Java language (JDK 1.6) with a semantic
web library Jena [8]. Although various protocols for send-
ing text messages are available as low protocols under the
ICLS protocol, we adopted TCP/IP as the default. We used
Java and Jena, but it does not mean any dependency since
the technologies we adopted are standardized well. In ad-
dition there exist some cell phones which can run Java pro-
grams in these days, and thus it can be possible to port our
library to other platforms.

In order to verify the feasibility of the ICLS specification
and the stability of the communication protocol, we devel-
oped three interface clients and two logic servers (Figure 8).
Three clients are a GUI client (a), a simulator of mobile
device (b), and a simulator of voice UI (c). Two servers
are a reminder service and a remote controller of a vir-
tual appliance. Although these clients and servers are sim-
ple and small-scale ones, they include the essence of more
general and typical applications. We are also developing
a prototype resolving layout problem from logic descrip-
tion in terms of GUI. The GUI client generates GUI dialog
boxes using Swing as a GUI toolkit, according to the AIDL
documents received from servers (Figure 8-a). We imple-
mented meanings ex:LampPowerState, ex:Power-
State, and ex:Date into the client. Users can customize
whether the client reflects these meanings or not with a set-
ting dialog box. The mobile client has a small screen and a
wheel control, and offers hierarchical menu UIs (Figure 8-
b). We implemented a meaning ex:PowerState, so that
the client can offers its wheel as a metaphor of a power



Figure 8. Screenshots of the interface clients:
a GUI, a mobile device, and a voice UI.

switch. The client of voice UI simulator expresses voice
communication with text strings (Figure 8-c). Users can uti-
lize connected services through command inputs with key-
board and outputs of text.

5. Discussion

In this paper, we are placing emphasis on the diversity
of devices and platforms, and thus, we designed the archi-
tecture in which the servers handle all functionalities except
for about specific UIs, and we focused on the aspect of in-
put. To address many kinds of devices and platforms in a
standardized architecture, we must consider both input and
output of contents, but we addressed the input aspect mainly
as a first step. Since it is difficult to separate the whole UI
processes from service codes, we designed interface clients
to handle only device- and modality-specific UI processes
leaving common UI processes in servers We intend to en-
gage clients in utilizing their resources for the generation of
various UIs, and we did not add any scripting functionality
to the architecture for retaining the design simplicity.

The infinite meanings can be defined freely as RDF
classes by service (logic server) developers, and they pose
a problem for how client developers decide which mean-
ings they implement. It is a common problem in existing
contributions including [12], because we are addressing the
real world problem. In our architecture, however, the mean-
ings represented by RDF classes allow a client to infer them
by traversing class hierarchy trees until it finds a meaning

that can be interpreted. In addition, since RDF documents
are considered to be handled by arbitrary communities with
consistency, our system can deal with meanings flexibly
with RDF documents written by current and future devel-
opers of service and devices.

In the above implementations, we have adopted tenta-
tive rules of generating UIs from logical descriptions, but
at least for the GUI client, we have ended up finding a cer-
tain solution. For generating GUI, the rule is reduced to the
mapping between selection acts with meanings to appropri-
ate widgets, and the layout problem of these widgets.

6. Related work

As a general solution, a broad range of research was
proposed, and almost all of them employ the approach of
model-based UI design [7, 16], which commonly utilize
logical descriptions. There are some researches address-
ing the static generations of UIs on development times, dy-
namic generations for remote controlling with multiple de-
vices, and ones handling migratory interfaces.

Web migratory interface system was proposed in [2],
which targets arbitrary web applications and performs a
reverse engineering of existing web pages in order to ob-
tain their logical information. The previous version of
the system [3] is based on model-based UI design tool
TERESA [4], and handles web applications developed with
that specific tool. This is a strong limitation, and thus,
the improved solution was presented, in which their system
handles existing web applications with a reverse engineer-
ing of web pages. This approach has a benefit for handling
specific web applications, but it does not suit our purpose.
For example, a input button of HTML elements means not
only a navigator but also a selection in some web applica-
tions, and still more in general UIs.

Ubiquitous interactor (UBI) [13] addresses service spe-
cific domains with customization forms in logical descrip-
tions for developing services without depending on devices,
but it does not consider migration. It is similar to our solu-
tion in terms of that it can represent various UIs for services
using interaction acts as the elements of interaction, but it is
different in that UBI uses specialized customization forms
for each device for controlling presentations on specific de-
vices. Since the customization forms have no portability
among different devices, developers have to customize their
descriptions for each device.

Personal universal controller (PUC) [11, 12] was pro-
posed for remote controlling various appliances with only
PDAs, but there is no consideration of migration there. PUC
uses smart templates for generating conventional presenta-
tions on some service domains, but the difficulty of defining
the smart templates is not mentioned.

User interface markup language (UIML) [1] is an XML



based language for developers to describe interfaces inde-
pendently of specific platforms. In development period, de-
velopers have to define relationships between elements in
UIML and other elements in existing language such as Java
and HTML. Thus, there is no runtime support for automatic
generation and migration of UIs.

As other related work, we can also mention Migratory
applications [5], XWeb [14], Document-based framework
[9], and ICrafter [15]. Migratory applications offer a pro-
gramming model for migration with distributed scripting
language Obliq, but this system is strongly dependent on the
scripting language. The other work has some similarities in
point of using XML and adopting model-based approach,
but they do not address UI migration.

7. Conclusion and future work

We presented a new solution, interface client/logic server
(ICLS) architecture, which has some limitations but offers
simultaneous interfaces, and we showed the new application
of outcome on the other research field. Simultaneous inter-
faces as the extension of migratory interfaces are new tech-
nique on UI fields we presented. Furthermore, we utilized
one of semantic web technologies, RDF in order to express
the meanings of interactions for describing service-specific
interactions with the meanings, which is a new application
of semantic web for the human computer interaction field.

As our future work, we have to remove some limita-
tions imposed on our solution, to consider exploiting the
outcomes of other work, and to evaluation it. The cur-
rent implementation of GUI interface client uses some lay-
out managers implemented in Swing, and has no intelligent
mechanism for laying out widgets. Here, we are exploiting
accomplishments in the fields of artificial intelligence, es-
pecially constraint satisfaction problems (CSPs), and pro-
totyping some clients. We are also considering exploiting
outcomes in the area of transcodings, which handles con-
version of the presentation of output information. In other
respects, because our architecture requires keeping client-
server connections alive, we have to evaluate the response
speed of UIs on networks. Development and evaluation of
authoring tools for AIDL documents in ICLS services are
needed for further research.

References

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster. UIML: An appliance-independ-
ent XML user interface language. In The eighth interna-
tional World Wide Web conference, 1999.

[2] R. Bandelloni, G. Mori, and F. Paternò. Dynamic generation
of migratory interfaces. In Proceedings Mobile HCI 2005,
2005.

[3] R. Bandelloni and F. Paternò. Flexible interface migration.
In IUI 04, pages 148–155, 2004.

[4] S. Berti, F. Correani, G. Mori, F. Paternò, and C. Santoro.
TERESA: A transformation-based environment for design-
ing and developing multi-device interfaces. In CHI 2004,
pages 793–794, 2004.

[5] K. A. Bharat and L. Cardelli. Migratory applications. In
Jan Vitek and Christian Tschudin, editors, UIST ’95 (Mo-
bile Object Systems: Towards the Programmable Internet),
volume 1222, pages 131–148. Springer-Verlag: Heidelberg,
Germany, 1995.

[6] J. Clark, M. Murata, and OASIS. RELAX NG, 2001. Avail-
able at http://www.relaxng.org/.

[7] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying
model-based techniques to the development of UIs for mo-
bile computers. In IUI ’01, 2001.

[8] Hewlett-Packard Development Company, L.P. Jena. Avail-
able at http://jena.sourceforge.net/.

[9] T. D. Hodes and R. H. Katz. A document-based framework
for internet application control. In USENIX Symposium on
Internet Technologies and Systems, 1999.

[10] E. Miller, R. Swick, and D. Brickley. Resource description
framework (RDF), 2004. Available at http://www.w3.
org/RDF/.

[11] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Har-
ris, R. Rosenfeld, and M. Pignol. Generating remote con-
trol interfaces for complex appliances. In UIST 2002, pages
161–170, 2002.

[12] J. Nichols, B. A. Myers, and K. Litwack. Improving auto-
matic interface generation with smart templates. In IUI 04,
pages 286–288, 2004.

[13] S. Nylander, M. Bylund, and A. Waern. The ubiquitous
interactor–device independent access to mobile services. In
CADUI’2004, pages 274–287, 2004.

[14] D. R. Olsen, S. Jefferies, S. T. Nielsen, W. Moyes, and
P. Fredrickson. Cross-modal interaction using XWeb. In
UIST 2000, pages 191–200, 2000.

[15] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Wino-
grad. ICrafter: A service framework for ubiquitous com-
puting environments. Lecture Notes in Computer Science,
2201:56–74, 2001.

[16] J. M. Vanderdonckt and F. Bodart. Encapsulating knowl-
edge for intelligent automatic interaction objects selection.
In CHI ’93, 1993.

[17] T. Yanagida and H. Nonaka. Interface migration using ab-
stract interaction description. In Technical Report of the In-
stitute of Electronics, Information and Communication En-
gineers SS2007-24, volume 107, pages 49–52, 2007. (in
Japanese).

[18] T. Yanagida, H. Nonaka, and M. Kurihara. User-preferred
interface design with abstract interaction description lan-
guage. In IEEE International Conference on Systems, Man
and Cybernetics, 2006.


