User-Preferred Interface Design with
Abstract Interaction Description Language

Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara

Abstract— For user-preferred interfaces, we propose a service
architecture, the Interface-Client/Logic-Server (ICLS). It sepa-
rates specific interfaces from services. An ICLS-based service
consists of some interface clients and a logic server. The target of
this work is the services with intermediary computers in various
scenes of our daily activities. Nowadays, against various users’
characteristics, the services offer different Uls individually, and
they are mostly single GUI. In ICLS, users can switch interfaces
of services to suit their preferences and to customize flexibly.
Interface clients and logic servers work together independently
with common descriptions of interaction. Those descriptions
are written in the Abstract Interaction Description Language
(AIDL), we propose. AIDL is an application of semantic web
technologies, and describes interactions as graphs. These graphs
represent a specification of interfaces and the current state of
interactions constantly. We propose a framework of ICLS-based
service design. Developers can use it like GUI toolkits. With this
framework, we developed three clients and two servers.

I. INTRODUCTION

We propose a service architecture, the Interface-Cli-
ent/Logic-Server (ICLS). It enables users to switch interfaces
of services to suit their preferences and to customize flex-
ibly (Fig. 1). A user can use one service by any interface
as well as any service by one interface. Furthermore, ICLS
permits developing services regardless of details of their
interfaces. Thus, ICLS separates interface developers from
service developers. We call this environment of ICLS-based
services user-preferred interfaces.

ICLS separates specific interfaces from services, and
constructs a service of some interface clients and a logic
server. Users prepare the client, and service developers set
up the server. The clients handle characteristic processes of
specific interfaces in all services. On the other hand, the
servers handle common processes of all interfaces and each
service’s own logic processes. The clients and the server
work together independently with some interaction graphs.
These interaction graphs mean specifications of interactions
between users and services written in the Abstract Interaction
Description Language (AIDL), we propose. We also intro-
duce the Presentation and Indication Model (PIM). It is a
model of interaction with AIDL. In this way, interface clients
and logic servers cooperate to compose services.

In this work, we developed a framework of ICLS and
several examples.

T. Yanagida, H. Nonaka, and M. Kurihara are with Graduate School of
Information Science and Technology, Hokkaido University, Sapporo, Japan
{takty, nonaka, kurihara}@main.ist.hokudai.ac.jp

II. BACKGROUND

The target of this work is the services with intermediary
computers in various scenes of our daily activities. The
services include, for example, web applications such as mail-
order of books or CDs, and information appliances such as
VCRs operated from remote places. Moreover, they include
application softwares on standalone PCs, and immediate
electric products with embedded computers. The occasions to
access interfaces of the services increase with the pervasion
of such services on our daily life.

Under the present circumstances, in spite of individual
differences of users’ characteristics, most of the services
offer only fixed and predefined Uls, and they are mostly
GUIs with respective design concepts. The users’ character-
istics involve their environments, physical descriptions, and
preferences for interfaces. Services do not consider them in
most cases. From an aspect of accessibility, it is desirable to
be able to use the services comfortably regardless of their
physical disabilities. However, existing approaches are just
developing substitutes of traditional mouses or keyboards.
Moreover, universal design techniques have not coped with
variation of individual users. The inconvenience has been
forced on users today.

For service developers, it is hard to make interfaces fitting
in various users on each service, because of a combinatorial
explosion. To prepare all interfaces for m users on n services,
developers have to develop m-n interfaces. Even today, com-
plicated interfaces increase the ratio of interface processes in
application codes, and require huge amount of work for their
implementations. Using our service architecture, the number
of interfaces is reduced to m +n; consequently, time and cost
for development are prominently slimmed down.

x"' Interface Client

":.,. --------------------------
Interface Interface

Developer R S |
I L]

Interaction in AIDL

Graph
[} ]
User ] ¥ Server
| Service Logic | Developer
Logic Server
Fig. 1. Interface Client/Logic Server (ICLS) architecture. Services are con-

sisted of users’ own clients and the servers provided by server developers.
Both of them work together via interaction graphs.



III. RELATED WORK

There are many works to deal with the problem about the
services. We can classify them roughly into two categories:
to support developers to implement interfaces on multi
platforms, and to enable users to operate the services by
typical interfaces. As the former’s example, UIML [1] is an
XML based language for developers to describe interfaces
independently from specific platforms. It is effective when
users’ characteristics can be estimated in a design phase
of the services. As the latter’s example, the work of an
application remote control system by GUI-character UI con-
version [2] converts Uls of Windows applications to e-mail
or web based interfaces. It has an advantage that existing
applications can be used, though it limits its interfaces to
mail or web based. The purposes of both are different from
ours, which is to enable users to exchange interfaces.

We have to mention about the Ubiquitous Interactor (UBI)
[3], [4] and the Personal Universal Controller (PUC) [5], [6].
UBI handles interactions as interaction acts and provides
a way to develop the services independently from devices.
Unlike ICLS, it does not completely entrust displays of
interfaces to clients. PUC deal with information sent between
appliances and clients as typed state variables. It has Smart
Templates to address domain-specific design patterns. Differ-
ent from ICLS, it does not focus on interactions.

IV. INTERACTION MODEL

We introduce here an interaction model, the Presentation
and Indication Model (PIM). In this model, interactions
are abstracted with selection acts of choices (Fig. 2). The
selection acts consist of presentation acts and indication
acts. The former stands for acts that service logics transmit
the information about choices to the users. The latter stands
for acts that the users transmit to the service logics which
choices the users selected. PIM confines interactions to what
they can be described as selections, and puts matters that
involve highly cognitive processes in the service.

In PIM, how choice sets are provided defines user’s
operation. We categorize choice sets into the three types: enu-
merate choice set, range choice set, and free choice set. The
first one is used to enumerate all choices. For example, when
a user selects a power state of a certain electric appliances,
the choice set is as follows: PowerStates = {On, Off}. The
second one is used to describe maximums and minimums
such as numeric. The last one is used when choices cannot

be enumerated like input of users’ names.

—>: Interface
=) : |nteraction

<— Presentation *

e Indlication —}>

Selection

User

Fig. 2. Presentation and Indication Model (PIM). Interactions, abstracted
as selection acts, consist of presentations and indications.

aidl:Dialog

aidl:Presentation

Power

aidl:
hasPiece

aidl:caption

aidl:means ex:PowerState)

aidl:

Selection aidl:EnumResources

aidl:Presentation

ComoD—— > orr]

aidl:describedBy  ajdl:caption

CO——+{ onpe |

aidl:
item

aidl:
hasResult

aidl:hasPiece

aidl:Selection  aidl:Presentation

Brightness
aidl:describedBy aidl:caption

aidl:EnumResources
aidl:Presentation

j O‘» Dim

aidl:describedBy  ajd:caption

aidl:
hasResult

@D e ]

Fig. 3. Example of an interaction graph in AIDL (an interaction with a
desk lamp). Ovals, rectangles, and arrows indicate RDF resources, literals,
and properties respectively

Furthermore, PIM handles meanings of selection acts to
improve concreteness of descriptions. A meaning can be
assigned in a selection act optionally, and it helps interface
clients to provide an appropriate affordance to users. For
example of the power state, with the meaning of PowerState,
the clients can show a user-friendly button with an icon. The
meaning introduces a concrete expression of the power icon.

V. GRAPH REPRESENTATION OF INTERACTION

Interaction graphs are the representation of interaction
based on PIM (Fig. 3). Selection acts, meanings of them,
types of choice sets, choices, etc. are described as elements
of these graphs. In ICLS, interface clients construct interfaces
from the graphs. In other word, we substitute the description
of interaction for these of interfaces. Unlike existing methods
for interface description, the graphs have no information de-
pends on specific devices and styles. Furthermore, interaction
graphs also mean the current state of interactions, which is
the result of users’ operations.

Abstract Interaction Description Language (AIDL), we
developed, is a vocabulary set of the Resource Description
Framework (RDF), which is one standard of semantic web
technologies [7], [8]. AIDL adopts the grammar and the
syntax of RDF. We use its specification handling all resources
by URI, in order to describe everything in the real world as
choices. In addition, we use the categorization of resources
by RDF classes to describe meanings of selection acts.
Because the services need specific meanings of selection acts
respectively, the increase of ICLS-based services brings the
increase of the meanings. In AIDL, many communities and
individuals can define meanings as RDF classes on demand;
therefore, we do not have to define all of them in advance.



A. Description of Interaction

AIDL expresses indication acts, presentation acts, and
selection acts as resources of corresponding RDF classes.
These resources are grouped and have inclusive relation to
make a tree structure in all. aidl:Presentation resources
stand for presentation acts, and express explanations (such as
captions) of other resources for users (Fig. 4-a). aidl:Indi-
cation resources stand for indication acts, and express that
users have to make a sign in any way (Fig. 4-b). The users’
responses to them are transmitted as a form of notification
to the servers separately. An aidl:Selection resource, as
a selection act, has a resource standing for a choice set
to express choices (Fig. 4-c). It connects to a choice by
aidl:hasResult property to express the result of users’ se-
lections. Meanings are assigned to both aidl:Indication
and aidl:Selection resources by aidl:means property.
An aidl:Group resource collects up related resources to
make a tree in totality. An aidl:Dialog resource that
extends aidl:Group becomes the root element in parent-
child relation of a tree structure (Fig. 5).

B. Selection and Response of User

An aidl:Selection resource shows a selection act
with a choice set and a meaning. The choice sets are
defined by definition methods, default types (resource, nu-
meric, string), and choices. Their resources connected via
aidl:selectedFrom property express the choices. Interface
clients use the default types when they cannot get a meaning
on a selection, or do not support the meaning. The selection
resources have RDF class resources through aidl:means
property to express meanings of themselves.

Updating graphs represents the results of users’ operations
(Fig. 6). In enumeration choice sets, the clients connect
one of existing choice resources to the aidl:Selection
resource with aidl:hasResult property. In range choice
sets or free choice sets, the clients connect a new literal

(a) Presentation aidl:Presentation

aidl:describedBy

©Sslection, Indication,

Group, or resources
means choices

aidl:caption

Caption of
resource

(b) Indication
aidl:Indication
aidl:means

an RDF
class

(c) Selection aidl:Selection

aidl:means .
aidl:selectedFrom

o T OO

Fig. 4. Graphs representing presentation act, indication act, and selection
act. They are written as RDF graphs.

an RDF

class aidl:item

aidl:Dialog

aidl:hasPiece

aidl:Group aidl:Group aidl:Selection

aidl:hasPiece

aidl:hasPiece

aidl:Group aidl:Selection aidl:Indication

Fig. 5. Tree structure of interaction graph. The resource of aidl:Dialog
means the root and the resources of aidl:Group mean the nodes, which are
connected via aidl:hasPiece property.

(a) aidl:EnumResources

aidl:Selection
aidl:
selectedFrom

aidl:Selection

aidl:
selectedFrom

aidl:
hasResult

-

(b) aidl:RangeNumeric

aidl:Selection aidl:Selection

aidl:selectedFrom aidl:selectedFrom

aidl:
frequency

aidl:
frequency

(c) aidl:AllStrings
aidl:Selection l aidl:Selection
aidl:
selectedFrom

aidl:

selectedFrom

idl:
O hasR:sluIt

Fig. 6. Graph of selection act and user’s response. The bold ovals express
choices sets. The lefts and the rights are the states before and after user’s
operation.

corresponding with the result. On the other hand, because
indication acts have no choice, the results of them are not
written as the updating directly. However, we handle them
with virtual updating to integrate the expressions.

C. Limitation of Presentation Acts

Interaction graphs have to be independent from all devices
and styles, and cannot contain device/style-specific media in-
formation like graphics, animations, and sounds. The graphs
use strings basically for their presentations. However, for rich
expression power without the dependence, AIDL enables to
link to some media with other RDF vocabularies. There are
many RDF vocabularies proposed. For example, it is possible
to assign display-sensitive information like graphics with
one of FOAF [9] properties. The foaf:depiction property
connects the aidl:Presentation to a resource expresses
media. Interface clients use those resources for presentation



/(a) aidl:dialog \

aidl:Selection aidl:Selection

aidl:EnumResources
L = @)
/(b) aidl:dialog \

ex:Radio

aidl:Selection

aidl:Selection

.

aidl:hasResult =———

Fig. 7. Diagram of state transition. The graph is replaced depending
on which of ex:Radio or ex:CD a user selects, and it expresses the
corresponding operation.

acts if they support these vocabularies, or take no account.
Hence, server developers cannot force clients to use these
media assigned in the graphs.

D. Description of State

An interaction graph represents the current state of a user
and a logic server consistently. A graph has one dialog,
and an interaction of service consists of one or more di-
alogs. Thus, in complex services that need multiple dialogs,
switching some graphs of dialogs means state transitions
(Fig. 7). The servers, instead of AIDL self, handle such state
transitions by switching graphs externally.

VI. ICLS ARCHITECTURE

The Interface-Client/Logic-Server (ICLS) architecture, we
propose, consists of interface clients that users prepare and
logic servers that service developers set up, and both of them
work together. The clients handle characteristic processes of
specific interfaces in all services, while the servers handle
processes common to all interfaces and logic processes of
each service. As sharing one interaction graph, they work
together independently. Actually, they have a graph respec-
tively, modify it, and synchronize each structure through
exchanging change logs. This synchronization process on
transmission of logs is executed according to the graph
structure synchronize protocol. The independence of the
clients and the servers brings a commutative property of
interfaces of the services.

In clients, the interface components interpret graphs and
generate real interfaces (Fig. 8). A client coordinates com-
ponents taken from itself or networks, to consist of an
interface. Components exist corresponding to each selection
act and indication act in a graph. There are various kinds of
components handling choice sets and meanings of selection
acts. Hence, clients can compose variety of interfaces using
respectively available components.

A. Division of Interface Process

Interface processes of the services are divided into char-
acteristic processes on specific interface and common pro-
cesses on all interfaces. The first is unique elements to each
interface that not be appeared in interactions. In GUI, for
example, there are many unique elements of GUI. They
process of displaying widgets like windows, buttons, edit
boxes, and check boxes, and they accept users’ operations
for themselves. In contrast, the second, processes common to
all interfaces are the elements involving interactions. Event
processing and state transitions of interactions are common
despite their diverse appearances.

ICLS does not separate all interface processes from the
services, but divides them. Interface clients handle only the
characteristic processes of specific interfaces, while logic
servers handle only the common processes of all interfaces,
for example, state transitions of interactions and feedbacks
according to users’ operations depending on logics. We did
not separate interface completely because the processes are
sure to contain service-characteristic parts. ICLS has to avoid
that clients depend on specific services through delegating
that service characteristic processes to servers.

B. Cooperation Process

In the beginning to use a service based on ICLS, users
have to connect interface clients with logic servers, and then,
clients and servers communicate with each other by the graph
structure synchronize protocol. With a typical scenario, we
explain the flow of cooperation from interface composition
of a client to operations of a user, and server’s responses
reflected the operations (Fig. 9).

1) When a user connects a client to a server, the client
and the server share an interaction graph prepared by
the developer of the server.

2) The client gets information from itself or networks
about some selection acts in the shared graph.

3) The client gets corresponding components based on the
information from itself or networks.

4) The components initialize themselves using the given
sub graph, and they generate and display interfaces,
which the user operates.

5) The user starts operations on the interfaces displayed,
and the components accept that operations.

6) The components update the shared graph to reflect the
results of the user’s operations, and the server offers
the correspondent service.

N
N
- * = i 5 6 18 9 (o
B L -3 0112 13 14 15 16
= & 17 18 19 20 21 22 23

i | (R 24 25 26 27 28 29 30 1uﬂm‘

& Fo Ty
ex:Angle ex:Place
Fig. 8. Examples of interface component



(1

Interface
Client

)

Interface
Client

@)

Interface
Client

4)

Client

|

w Server

Cooperation of client and server

Fig. 9.

VII. GRAPH STRUCTURE SYNCHRONIZE PROTOCOL

We developed a communication protocol, the graph struc-
ture synchronize protocol. It is a protocol to maintain the
structures of two RDF graphs in an interface client and
a logic server by exchanging change logs of the graphs.
The client and the server possess a graph and a change log
respectively, and reserve their modification for the graphs
as adding or removing of RDF statements. After that, they
transmit change logs each other at any timings, and apply the
logs to update the graphs. This iteration of reservation and
application of the logs makes the graphs equal at all times.
The flow of transmissions is as follows (Fig. 10):

1) A client connects with a server and receives a graph
that the server has.

2) The client and the server change the own graphs in
parallel and reserve their logs.

3) The client sends its log to the server, and the server
applies it to the own graph. If the server executed a
state transition by exchanging the graphs, return to 1).

4) The server sends its log to the client, and the client
applies it to the own graph. Return to 2).

©) Client Q)

Server )
Po P1 Po P1
™ @ — ™ @
Ps Ps
@ ®)

Update logs

)

Remove (ry, py, 1)

Fig. 10. Synchronization process by Graph Structure Synchronize Protocol.
The left side indicates clients, and the right side indicates servers.

There are two types of the updates, the one is by exchang-
ing change logs and the other is that a server sends a graph
responding to sending log of a client. A server sends a whole
graph when a client connects at the beginning, or the graph
in server is modified drastically. In addition, because they
communicate each other with difference information by the
logs, the amount of the transmission can be reduced than
sending the graph in whole.

VIII. IMPLEMENTATION

We propose a framework of ICLS to make developments
of services and interfaces, and developed three interface
clients and two logic servers by using it. This framework
is class library written in Java language. We designed its
structure to emulate existing GUI libraries. Hence, the de-
velopers can use it in the same way as those libraries. In the
framework, TCP/IP protocol using socket was adopted as the
default implementation.

A. Generation of Graph and Event Handling

Using the framework, developers can generate interaction
graphs like creating dialog boxes with some GUI toolkits. In
this framework, a Graph object shows an interaction graph.
First, the object is generated, and then an ElementFactory
object that the Graph object has generates some objects such
as Dialog and Selection. After configurations of these
generated objects, they are added to Dialog and Group
objects by the add methods. As a result, RDF resources that



©

S/ Power
S/ Brightness

£ Dialog Q@@
Brightness

_) Dim

_J ) Normal

@® Bright

<lo >

(b)

> s o
brightness -l
power

> |s power

n
Of f
> power 1

> |s brightness
Dim

Normal

Bright

> brightness 3

>

‘ iy

I

Fig. 11. Screen shots of Interface Clients

Graph maintains and corresponding to elements of the graph
is generated, and a necessary graph is completed.

The event processing mechanism is similar to GUI. Three
kinds of event listener interfaces: IndicationListener,
SelectionListener, and SessionListener are used for
various event processing. As assigning each implementation
of the interfaces in Indication, Selection, and Session,
appropriate methods are called when events are generated.

B. Development of Clients and Servers

We developed the interface clients of a GUI version, a CLI
version, and a simulator of a portable terminal version. The
GUI client constructs a dialog box from an interaction graph
(Fig. 11-a). We created two components corresponding to
ex:PowerState and ex:Date as examples. The CLI client
shows a graph structure as a directory structure of file system,
and a user inputs commands to operate it (Fig. 11-b). The
portable terminal type client has a small screen and 5 buttons,
and operated like music player (Fig. 11-c).

The logic servers of desk lamp simulator and scheduler
service were also developed. Users can use these servers
through the clients. The desk lamp simulator is a remote
control service for a simulated desk lamp. We developed it
as one example of service operating appliances in home or
from remote places (Fig. 11, 12-a). The scheduler service is
another example of applications that run on general PCs and
PDAs. When users connect clients with this server, they are
shown a list of schedules, and can correct or remove them
or add new one (Fig. 12-b).

IX. CONCLUSIONS AND FUTURE WORK

In this paper, to improve the current condition about
interfaces of service, we have proposed the architecture
of interface-client/logic-server (ICLS). It enables users to

(b)

Content
Eat soup cuny
£ vesktam (][50

<< | 200672 | >>

s|m|T[w|[T[F[s
D
5 6 7 |8 [8 [10[11
12[13[14[15[16 [17 [18
19 [20]21 (222324 25
26 |27 |28

e

.

]
-

on_| et |

Fig. 12.
services

Screen shots of client that connect desk lamp and scheduler

choose preferred interfaces depending on their situation or
individual difference. Moreover, we developed the Abstract
Interaction Description Language (AIDL) using RDF to
describe interactions, and proposed an interface composition
technique based on AIDL. In addition, by the several im-
plementations, we have illustrated that ICLS can become a
way of improvement of services. There are the three points
of this work as follows:

« The abstraction of interactions focused on selection acts.
« The description technique of interactions that identify
specifications of interfaces with states of interactions.

« The application of semantic web technique to interface.

ICLS improves the present circumstances that most of the
services offer only fixed and predefined Uls, which are
mostly GUIs with respective design concepts.

Future work involves an improvement of ICLS and pro-
vision of development tools. It is important that studies of
an automatic customizing technique from components and
users’ characteristics. We will offer some visual development
tool that can describe interaction graphs in the sight. Finally,
we will achieve the interfaces that understand more meanings
of interactions on them.

REFERENCES

[1] Harmonia, “Tutorial booklet december,” 1997.

[2] H. Okada and T. Asahi, “PC remote controller based on user interface
transformation,” The Transactions of Human Interface Society, vol. 4,
no. 4, pp. 235-244, 2002.

[3] S. Nylander and M. Bylund, “The ubiquitous interactor—universal access
to mobile services,” in HCII 2003, 2003.

[4] S. Nylander, M. Bylund, and A. Waern, “The ubiquitous interactor—
device independent access to mobile services,” in CADUI’2004, 2004,
pp. 274-287.

[5] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol, “Generating remote control interfaces for complex
appliances,” in UIST 2002, 2002, pp. 161-170.

[6] J. Nichols, B. A. Myers, and K. Litwack, “Improving automatic
interface generation with smart templates,” in IUI 04, 2004, pp. 286—
288.

[7] E. Miller, R. Swick, and D. Brickley, “Resource Description Framework
(RDF),” available at
http://www.w3.0org/RDF/.

[8] E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler, G. Schreiber,
D. Wood, and D. Connolly, “W3C Semantic Web,” 2001, available at
http://www.w3.0rg/2001/sw/.

[9] FOAF, “The Friend of a Friend (FOAF) project,” available at
http://www.foaf-project.org/.



