
Keeping the Stability of Solutions to Dynamic
Fuzzy CSPs

Yasuhiro Sudo and Masahito Kurihara
Graduate School of Information Science and Technology

Hokkaido University
Sapporo, Japan

Email: {sudoy, kurihara} @complex.eng.hokudai.ac.jp

Takuto Yanagida
Graduate School of Information Science and Technology

Hokkaido University
Sapporo, Japan

Email: takty@main.ist.hokudai.ac.jp

Abstract—A fuzzy constraint satisfaction problem is an ex-
tension of the classical CSP, a powerful tool for modeling
various problems based on constraints among variables, and a
dynamic CSP is a framework for modelling the transformation
of problems. These schemes are the technique to formulate real
world problems as CSPs more easily. The CSP model that
combines these is already has splendid researches. The Fuzzy
Local Change algorithm is practicable enough in small-scale
problems, but larger problems require the use of approximate
methods. The algorithms for solving CSPs are classified into
two categories: systematic searches (complete methods based on
search trees), and local searches (approximate methods based on
iterative improvement). Both have advantages and disadvantages.

In the work reported in this paper we tested a hybrid
approximate method, called the Spread-Repair-Shrink algorithm,
on dynamic, large-scale problems. The algorithm repairs local
constraints by repeatedly spreading and shrinking a set of search
trees until the degree to which the worst constraints (the roots of
the trees) are satisfied is improved. In this process, the ”stability”
of solutions can be maintained because the reassignment is
locally limited. Additionaly, we innovate SRSD filter as after
filtering. We empirically show that Spread-Repair-Shrink and
SRSD algorithm keep the stability of solutions rather than other
algorithms. It is able to quickly get a good-quality approximate
and stabile solution to a large problem.

I. I NTRODUCTION

A constraint is a restriction on a space of possibilities,
a piece of knowledge that narrows the scope of this space.
Because constraints arise naturally in most areas of human
endeavor, they are the most general means for formulating
regularities that govern our computational, physical, biologi-
cal, and social worlds. Many problems arising in such domains
can be naturally modeled as constraint satisfaction problems
(CSPs). A CSP consists of a finite set ofvariables, each asso-
ciated with a finitedomainof values, and a set ofconstraints
among the variables. Asolution is an assignment of a value
to every variable such that all constraints are satisfied.

Since CSPs are NP-complete problems in general, no ef-
ficient and complete algorithms for solving CSPs exist and
the increase in the worst-case computation time increases
exponentially with the size of the problems. In most of the
cases, however, we can obtain a solution in practical time by
using incomplete algorithms.

CSP algorithms are usually categorized into two classes.
One of them is tree search algorithms based on systematic

extension of partial consistent assignments and backtracking.
The other is local state-space search algorithms based on
iterative improvement in inconsistent full assignments. These
techniques have been developed almost independently, but
much attention has recently been paid to hybrid methods
combining the strengths of each class of algorithms. An
example is the decision-repair algorithm developed in [7], an
extended version of a prize-winning paper presented at AAAI-
2000.

From the viewpoint of soft computing, however, the classi-
cal CSP is too rigid to formulate real-world problems. Much
work has therefore been done on the extensions of CSPs.
In a fuzzy CSP (FCSP), for example constraints are repre-
sented by fuzzy relations, which accommodate incomplete
solutions providing information useful for solving real-world
problems[1], [8]. And a dynamic CSP (DCSP) is a framework
for modelling the dynamic transform of problems. In many
situations a problem changes and it is necessary to solve the
changed problem. If the search for a solution to the changed
problem starts from scratch, the effort that had been expended
to solve the original problem will have been wasted. The key
to efficiently solving DCSPs is to re-use resources such as
adjacent information as much as possible. The effectiveness in
re-use the adjacent solution in the way of default assignments,
and min-conflict heuristics are known[2], [3].

The Spread-Repair-Shrink (SRS) algorithm is a FCSP solver
developed by the authors [5]. The evaluation function of
FCSPs is defined as maximizing the degree to which the
most violated constraint is satisfied. The SRS algorithm boosts
search efficiency by restricting iterative improvement to the
most violated constraint. This will contribute to the stability
of solutions in DCSPs. Here we show the results of compre-
hensive experiments, using randomly-generated problems with
various sets of parameter settings, that when the problem is
sufficiently large the SRS is more effective than starting each
search from scratch.

This paper is organized as follows. In Section 2, we briefly
review the classical CSP, the fuzzy CSP, and the dynamic CSP.
In Section 3, we describe the SRS algorithms and SRSD filter.
In Section 4, we show the experimental results and discuss the
performance of the algorithm. In Section 5, we conclude the
paper by summarizing it and indicating directions for future

work.

II. CLASSICAL, FUZZY, AND DYNAMIC CSPS

A. Classical CSP

A CSP is defined by a set of variablesX = {xi}n
i=1 that

take values from finite domainsD = {Di}n
i=1 under a set of

constraintsC = {ck}r
k=1, whereck denotes a relationRk on

a subsetSk(Sk ⊆ X) of X.

Rk ⊆ Dk1 × · · · ×Dkw
for Sk = {xk1 , · · · , xkw

}
Sk is called thescopeof Rk. If w = 1, 2, or 3, the relation is
called aunary, binary,or ternary relation, respectively.

B. Fuzzy CSP

A fuzzy CSP (FCSP) is defined as an extension of the
classical CSP. In an FCSP the constraintsck are represented by
fuzzy relationsRk whose membership functions are defined
by

µRk :
∏

xi∈Sk

Di → [0, 1] · · · (1)

In other words, a membership valueµRk(vSk
) of an assign-

mentvSk
to the variables in the scopeSk of a constraintCk

takes[0, 1]. The membership value is also called thedegree
of satisfaction.

The fuzzy conjunction (AND)Ck ∧ Cl of two constraints
Ck andCl is the fuzzy relationRk ∩ Rl with scopeSk ∪ Sl

and membership function

µRk ∩Rl(v) = min(µRk(v[Sk]), µRl(v[Sl])) · · · (2)

wherev[S] is theprojection. Since the FCSP requires the fuzzy
conjunction of all the fuzzy constraints to be satisfied, the
degree of satisfaction of the whole FCSP is defined as the
minimum degree of satisfaction as follows.

µ

r⋂

k=1

Rk(v) = min
1≤k≤r

(µRk(v[Sk])) · · · (3)

To simplify the notation, we denote the minimum degree of
satisfaction of the whole FCSP, givenv, by Cmin:

Cmin(v) = min
1≤k≤r

(µRk(v[Sk])) · · · (4)

Givenv, any constraintck that gives this minimum is denoted
by c∗ and called amost violated constraint. If Cmin(v) > 0,
v is called asolutionof the FCSP. A solution that maximizes
Cmin(v) (i.e., the degree of satisfaction ofc∗) is called an
optimal solution. An FCSP is therefore regarded as an opti-
mization problem which requires the search for an assignment
v that maximizes the minimum degree of satisfaction of the
constraints. Thus the optimal value of the objective function
(4) is formulated as follows.

max
v

(min
1≤k≤r

(µRk(v[Sk]))) · · · (5)

Fuzzy GENET (FGENET) is a neural network model, for
solving binary FCSPs. Corresponding to each variable of a
given FCSP is a cluster of neurons which represent the values
in the domain of the variable. A pair of neurons corresponding

to two values forbidden by the constraints are connected to
each other, given a negative weight for suppressing firing each
other. The states of the neurons are changed asynchronously
according to inputs. When trapped in local maxima, the
procedure tries to escape from them by increasing weights
of appropriate neurons responsible for the trap. By this simple
mechanism, the method successfully attained almost the same
good performance as the evolutionary/systematic hill-climbing
method.

C. Dynamic CSP

A dynamic CSP (DCSP) is defined as follows[3]:

DC = {CSP0, CSP1, CSP2, · · ·} · · · (6)

CSPi is a new problem revised such thatCSPi−1. The model
that combined fuzzy and dynamic CSPs as a sequence of
FCSPs has been proposed[2], but in this paper we simplify
that model by defining a DFCSP as a tupple of two FCSPs

FDC = {FCSPP , FCSPF } · · · (7)

Solving DFCSP is to search optimum assignment ofFCSPF

that is changedFCSPP . In real world applications the differ-
ence between both assignments should be as small as possible.
We define the degree of similarityδ(v, v′) as follows:

δ(v, v′) =
∑n

i=1

n

{
1 v(i) = v′(i)
0 otherwise

· · · (8)

Where v(i) is an assignment of a variablexi. The larger
δ(v, v′) is, the more stable the solution is. Such stability is
recommended in a DCSP framework[3]. Here, however, we
do not degrade the quality of a solution (increase constraint
violations) in order to increase its stability. The formula (3) is
therefore confined to the sub-evaluation.

In this numerical model, the Fuzzy Local Change (FLC)
algorithm is well known. However, FLC is categorizeｄ in a
systematic search, so it is inefficient in large scale problems.

III. SRS ALGORITHM

If the domain of a CSP or FCSP is a finite and discrete
set, it is possible to generate a complete search tree and
search for solutions exhaustively, but in the worst case the
time complexity increases exponentially with the size of
the problem. Although extensive efforts have been devoted
to developing hybrid methods combining the advantages of
the systematic and local search methods for solving CSPs,
methods for solving FCSPs have received almost no attention.

In this section we describe a spread-repair-shrink (SRS)
algorithm that efficiently obtains good approximate solution
to FCSPs. The type of hybridizing is summarized as follows:

• performing an overall local search, and using systematic
search in order to control constraint propagation for
escaping from local optima.

c*

C C

CC

C

O N

O

C
O

:closed
:open

open

(root)

c*

C C

CC

C

O

OO
open

c*

C O

C

C

O

O
open

C

O

N :node

ShrinkSpread

Fig. 1. Spread and Shrink operations

Fig. 2. The evaluation is decided by minimum satisfactions

1) : As explained in the previous section, FCSPs are solved
by maximizing the degree to which the most violated con-
straints (c∗’s) are satisfied. The Spread-Repair (SR) algorithm
developed by the authors in [4] repeatedly tries torepair a
target constraintc∗ by changing the value of a variable in its
scope. When trapped in a local maximum, it tries to escape
by the operation calledspreading, which changes the target of
the repair to the ‘neighbor’ constraints surrounding the current
target.

The SRS algorithm combines the original local search
framework of the SR algorithm with a new systematic search
operation calledshrinking, which is almost an inverse oper-
ation of spreading because it changes the target back to the
previous target in order to propagate the effect of the repair
to c∗. This process reduces the computational redundancy that
occurs with the SR algorithm.

More precisely, given a set of most violated constraints,
the SRS algorithm maintains a forest (i.e., a set of trees)
consisting of search trees that are subgraphs of the dual-
constraint network. Each root node corresponds to one of
the most violated constraints, and the leaf nodes of the trees
correspond to the potential target constraints that can be
checked for the repair. By spreading, repairing, and shrinking

Fig. 3. SRSD filter algorithm

the trees, the algorithm tries to repair all thec∗’s effectively.
The structure of the algorithm, based on the open/closed-lists
algorithm well-known in the AI literature, consists of the three
modes (Repair, Spread, andShrink) to be switched from one
to another in the running time.

Many other implementations of the repair operation could
be used, and which one we should use depends on the
problem domains and the purposes of the application. In the
experiments described in Section 4 we used SRS3[5], which
is the best in terms of CPU time, quality of solutions, and
implementation cost.

A. Keeping Stabilities

The structure of the spreading process of the SRS algorithm
is similar to that of the graph-search procedure well-known in
the AI literature. Corresponding to the goals (or targets) in
the graph-search are the nodes which can be locally repaired
by changing the value of a variable. When the most violated
constraintsc∗ cannot be repaired, the algorithm tries to find
such targets by constructing the search trees rooted atc∗.
This process, calledexpansionin the graph-search, is called
spreadingin the SRS algorithm.

The open and closed lists are maintained in the process. In
each loop, the procedure takes a node out of the open list as
a candidate for Repair operation. If it cannot be repaired, it is
put into the closed list. The nodes adjacent to that node are
then put into the open list as its children whenever they are
not already in the open list or the closed list (Fig. 1).

When a target constraint (node) has been found and re-
paired, the SRS algorithm changes its mode Shrink, in which
it tries to propagate the effects of the repair back to the root
c∗. For this purpose, its focus is moved from the repaired
node to its parent node, which is closer to the root, and
all the descendants of the new focus are removed from the
open and closed lists. Then this shrinking process is repeated
recursively until the focus reaches the root or it turns out that
the focus cannot be repaired any more. Note that SRS performs
efficiently by maintaining the path fromc∗ to the repaired node
in the search tree, while our previous algorithm SR [4] has to

TABLE I
15 VARIABLES , 10 DOMAIN ’ S SIZE AND 5 PERCENT CONSTRAINTS

REPLACED

Fig. 4. Stability of algorithms

restart the spreading from the scratch after each repair of the
target.

The SRS algorithm thus increases the efficiency of its
searching by iterative improvement that is restricted around
the most violated constraint. This means that the changing
the value of each variable is suppressible. As a result, this
approach will contribute to keep stability of solutions in DCSP
schemes.

B. SRSD Filter

Now, if an effectiveness of a solution of a DFCSP is
given by the worst violated constraintComega, we can up
the stability under the restriction that is definedµR(v′[x]) ≥
Cmin(v[x]) (Fig.2). Here,v′ is former assignment. So, we
compose a SRSD method that return assignments greedy
(Fig.3). However, this method vitiates average of satisfaction
degree that is defined as follows.

TABLE II
15 VARIABLES , 10 DOMAIN ’ S SIZE AND 10 PERCENT CONSTRAINTS

REPLACED

Fig. 5. Stability of algorithms

Cave =
1
r

r∑

k=1

Ck · · · (9)

IV. EXPERIMENTAL EVALUATION

We have tested the performance of the SRS algorithm and
SRSD filter by the measuring its performance in a compre-
hensive experiment using randomly-generated problems with
various values for the density and tightness parameters. The
performance is measured by the stability (formula 8).

The test problems were randomly generated binary FCSPs
with parametersn, ∆, d, and t, wheren is the number of
variables,∆ is the common size of the domainsD1, . . . , Dn,
d is the density of the constraint network, andt is the average

TABLE III
30 VARIABLES , 10 DOMAIN ’ S SIZE AND 3 PERCENT CONSTRAINTS

REPLACED

Fig. 6. Stability of algorithms

tightness of constraints[13]. In this section, we defined andt
as follows.

d =
r

(n2 − n)/2
· · · (10)

t = 1− 1
r

r∑

k=1

[
1∏w

i=1 |Di| ·
∑

v∈
∏w

i=1
Dki

µRk(v)
]

· · · (11)

Here, Sk = {xk1 , · · · , xkw}. In the experiment, we set
n = 15, 30, ∆ = 10 and d and t are chosen from the
set{0.2, 0.4, 0.6, 0.8}. For each combination of sixteen(d, t)
values, 100 problem instances were been generated randomly
and solved.

The simulation was divided into the following four steps:

TABLE IV
30 VARIABLES , 10 DOMAIN ’ S SIZE AND 5 PERCENT CONSTRAINTS

REPLACED

Fig. 7. Stability of algorithms

• get an (approximate) solution by using FLC or SRS
algorithm.

• select a constraint(s), and make a change so that the
satisfaction degree falls.

• apply the FCSP algorithm again, using the adjacent
solution in the way of default assignments.

• apply the SRSD filter.
• check the stability between both solutions.
The results are shown in Tab.1, 2, 3 and 4. The Fig.4, 5, 6

and 7 are graphs expected to be going to extract only stability
easily.

The average objective values are summarized in the figures.
The constraint was replaced according to the scale of the
problem as 3, 5 and 10 Percents.

In all parameter, the results of SRS3 and SRSD is effective.
The efect of SRSD after FLC is little, but in other case SRSD
heightens stability of the solution. From these results, we see
that a practically stable solution can be obtained by using SRS
and SRSD algorithm.

V. CONCLUSION

We have tested the Spread-Repair-Shrink algorithm and
SRSD filter for obtaining stable approximate solutions to
Dynamic Fuzzy Constraint Satisfaction Problems. SRS and
SRSD can be thought of a new type of hybrid algorithm
combining systematic search with local search because it

exploits the MAX-MIN feature of (D)FCSP in focusing on
the most violated constraint (c∗) to be repaired efficiently by
systematic Spread, Repair, and Shrink operations on the search
trees. The experimental results show that the SRS and SRSD
are useful when we want relatively good stable approximate
solutions to large-scale dynamic problems.

Future research topics include further improvements of
solution quality and stability. Also interesting is the extension
of the idea to broader classes of soft computing, such as
those called Soft Constraint Satisfaction Problems (Max CSPs,
Weighted CSPs, etc.) [14], [15].

REFERENCES

[1] Zs. Ruttkay, “Fuzzy constraint satisfaction”,Proceedngs of 3rd IEEE
Intern. Conf. on Fuzzy Systems, Vol. 3, pp.1263-1268, 1994.

[2] I. Miguel and Q. Shen, “FuzzyrrDFCSP and Planning”,Artificial
IntelligenceVol. 148, pp.11-52, 2003.

[3] G. Verfaillie and T. Schiex, “Solution Reuse in Dynamic Constraint Sat-
isfaction Problems”,Proceedings of the 12th National Conf. on Artificial
Intelligence, pp.307-312, 1994.

[4] Y. Sudo, M. Kurihara and T. Mitamura, “Spread-Repair Algorithm for
Solving Extended Fuzzy Constraint Statisfaction Problems”,Proceedings
of the 4th IEEE International Workshop on Soft Computing as Transdis-
ciplinary Science and Technology, pp.891-901, 2005.

[5] Y. Sudo and M. Kurihara “Spread-Repair-Shrink: A Hybrid Algorithm
for Solving Fuzzy Constraint Satisfaction Problems”,Proceedings of
the IEEE World Congress on Computational Intelligence(WCCI2006),
pp.9969-9975, 2006.

[6] S. Minton, M.D. Johnston, A.B. Philips and P. Laird, “Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling
problems”,Artificial IntelligenceVol. 58, pp.161-205, 1992.

[7] N. Jussien and O. Lhomme, “Local search with constraint propagation
and conflict-based heuristics”,Artificial Intelligence, Vol. 139, pp.21-45,
2002

[8] P. Meseguer and J. Larrosa, “Solving fuzzy constraint satisfaction prob-
lems”, Proceedings of 6th IEEE Intern. Conf. on Fuzzy Systems, Vol. 3,
pp.1233-1238, 1997

[9] R.M. Haralic, and G.L. Elliot, “Increasing Tree Search Efficiency for
Constraint Satisfaction Problems”,Artificial Intelligence, Vol. 14, pp.263-
313, 1980

[10] H.M. Adorf and M.D. Johnston, “A discrete stochastic neural networks
algorithm for constraint satisfaction problems”,Proceedings International
Joint Conference on Newral Networks, CA, 1990

[11] J.H.Y. Wong and H. Leung, “Extending GENET to Solve Fuzzy Con-
straint Satisfaction Problems”,Proceedngs of 15th National Conf. on
Artifitial Intelligence(AAAI-98), pp.380-385, 1998

[12] J. Bowen, and G. Dozier, “Solving Randomly Generated Fuzzy Con-
straint Networks Using Evolutionary/Systematic Hill-Climbing”,Pro-
ceedings of 5th IEEE Intern. Conf. on Fuzzy Systems, vol. 1, pp.226-231,
1996

[13] J. Culberson and T. Walsh, ”Tightness of Constraint Satisfaction Prob-
lems”, APES-29, 2001

[14] R.J. Wallace, “Enhancements of Branch and Bound Methods for the
Maximal Constraint Satisfaction Problems”,Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp.188-195, 1996

[15] S. Bistarelli, “Semirings for Soft Constraint Solving and Programming”
(Lecture Notes in Computer Science 2962), SpringerVerlag, 2004

[16] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird, “Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling
problems”,Artificial Intelligencevol. 58, pp.161-205, 1992

