
Keeping the Stability of Solutions in Dynamic
Fuzzy CSPs

Yasuhiro Sudo and Masahito Kurihara
Graduate School of Information Science and Technology

Hokkaido University
Sapporo, Japan

Email: {sudoy, kurihara} @complex.eng.hokudai.ac.jp

Takuto Yanagida
Graduate School of Information Science and Technology

Hokkaido University
Sapporo, Japan

Email: takty@main.ist.hokudai.ac.jp

Abstract—A fuzzy constraint satisfaction problem (FCSP) is
an extension of the classical CSP, a powerful tool for mod-
eling various problems based on constraints among variables.
Meanwhile, a dynamic CSP is a framework for modelling the
dynamic transform of problems. These schemes are the technique
to formulate real world problems as CSPs, more easily.

The CSP model that combines these is already has splendid
researches. The Fuzzy Local Cange algorithm is practicable
enough in small-scale problems. However, when the scale of the
problems grows to some degree, it becomes necessary to use
approximate methods. Basically, the algorithms for solving CSPs
are classified into two categories: the systematic search (complete
methods based on search trees) and the local search (approximate
methods based on iterative improvement). Both have merits and
demerits.

In this paper, we tested a hybrid, approximate method called
the SRS algorithm, in case of large-scale problems. SRS repeats
spreading and shrinking a set of search trees in order to
repair local constraints until the satisfaction degree of the worst
constraints (which are the roots of the trees) is improved. In this
process, the ”stability” of solutions can be maintained because
the reassignment is locally limited. We empirically show that SRS
keeps the stability of solutions rather than starting the search
from scratch. It is able to quickly get a good-quality approximate
and stabilized solution of sufficiently large size of problems.

I. I NTRODUCTION

A constraint is a restriction on a space of possibilities;
it is a piece of knowledge that narrows the scope of this
space. Because constraints arise naturally in most areas of
human endeavor, they are the most general means for for-
mulating regularities that govern our computational, physical,
biological, and social worlds. Many problems arising in such
domains can be naturally modeled as constraint satisfaction
problems (CSPs). A CSP consists of a finite set ofvariables,
each associated with a finitedomainof values, and a set of
constraintsamong the variables. Asolutionis an assignment of
a value to every variable such that all constraints are satisfied.

Since CSPs are NP-complete problems in general, no effi-
cient and complete algorithms for solving CSPs exist and the
increase in the worst-case computation time is exponential in
the size of the problems. In most of the cases, however, we
can obtain a solution in practical time by using incomplete
algorithms.

CSP algorithms are usually categorized into two classes.
One of them is tree search algorithms based on systematic

extension of partial, consistent assignments and backtracking.
The other is local state-space search algorithms based on
iterative improvement in inconsistent, full assignments. These
techniques have been developed almost independently, but
recently, much attention has been paid to hybrid methods
integrating the virtues of each class of algorithms. An example
is the decision-repair algorithm developed in [7], an extended
version of a prize-winning paper presented at AAAI-2000.

From the viewpoint of soft computing, however, the tra-
ditional CSP is too rigid to formulate real world problems.
In order to improve this situation, much work has been done
on the extensions of CSPs. The fuzzy CSP (FCSP) is one of
such extensions, where constraints are represented by fuzzy
relations, which admit incomplete solutions for providing
useful information for solving real-world problems[1], [8].

Meanwhile, a dynamic CSP (DCSP) is a framework for
modelling the dynamic transform of problems. In many real
situations, it is often necessary to re-solve the changed prob-
lem. Where, if the searching starts from scratch, the effort
to solve a adjacent problem will have been wasted. The key
to efficiently solving DCSPs is to re-use the resource such
adjacent information as much as possible. The effectiveness in
re-use the adjacent solution in the way of default assignments,
and min-conflict heuristics are known[2], [3].

Spread-Repair-Shrink (SRS) algorithm is a FCSP solver
developed by the authors [5]. The evaluation function of FC-
SPs is defined as maximizing satisfaction degree of the most
violated constraint. The SRS algorithm boosts up searching
efficiency by iterative improvement that is restricted around
the most violated constraint. This approach will contributes to
keep stability of solutions in DCSPs. Based on comprehen-
sive experiments by using randomly-generated problems with
various sets of parameter settings, we show that SRS is more
effective than starting the search from scratch, in sufficiently
large size of problems.

This paper is organized as follows. In Section 2, we briefly
review the traditional CSP , the fuzzy CSP and the dynamic
CSP. In Section 3, we present the SRS algorithms. In Section 4,
we show the experimental results and discuss the performance
of the algorithm. Section 5 contains a summary of our work.



II. FUZZY, DYNAMIC CSP

A. Classical CSP

A CSP is defined by a set of variablesX = {xi}n
i=1 that

take values from finite domainsD = {Di}n
i=1 under a set of

constraintsC = {ck}r
k=1, whereck denotes a relationRk on

a subsetSk(Sk ⊆ X) of X.

Rk ⊆ Dk1 × · · · ×Dkw
for Sk = {xk1 , · · · , xkw

}

Sk is called thescopeof Rk. If w = 1, 2, or 3, then the relation
is called aunary, binary,or ternary relation, respectively.

B. Fuzzy CSP

A Fuzzy CSP(FCSP) is defined as an extension of classical
CSP where constraintsck are represented by fuzzy relations
Rk with their membership functions defined by

µRk :
∏

xi∈Sk

Di → [0, 1] · · · (1)

In other words, a membership valueµRk(vSk
) of an assign-

mentvSk
to the variables in the scopeSk of a constraintCk

takes[0, 1]. The membership value is also called thedegree
of satisfaction.

The fuzzy conjunction (AND)Ck ∧ Cl of two constraints
Ck andCl is the fuzzy relationRk ∩ Rl with scopeSk ∪ Sl

and membership function

µRk ∩Rl(v) = min(µRk(v[Sk]), µRl(v[Sl])) · · · (2)

wherev[S] is theprojection. Since the FCSP requires the sat-
isfaction of the fuzzy conjunction of all the fuzzy constraints,
the degree of satisfaction of the whole FCSP is defined as the
minimum degree of satisfaction as follows.

µ

r⋂

k=1

Rk(v) = min
1≤k≤r

(µRk(v[Sk])) · · · (3)

In order to simplify the notation, we denote the minimum
degree of satisfaction of the whole FCSP, givenv, by Cmin:

Cmin(v) = min
1≤k≤r

(µRk(v[Sk])) · · · (4)

Givenv, any constraintck that gives this minimum is denoted
by c∗ and called amost violated constraint. If Cmin(v) > 0,
v is called asolutionof the FCSP. A solution that maximizes
Cmin(v) (i.e., the degree of satisfaction ofc∗) is called an
optimal solution. Therefore, a FCSP is regarded as an opti-
mization problem which requires the search for an assignment
v that maximizes the minimum degree of satisfaction of the
constraints. Thus the optimal value of the objective function
(4) is formulated as follows.

max
v

( min
1≤k≤r

(µRk(v[Sk]))) · · · (5)

x1 x2

x3 x4

c2 c3

c1

c4

c1

c2 c4
c3

(a) (b)

Fig. 1. Constraint Graph and Dual Constraint Graph

C. Constraint Networks

The structure of CSPs and FCSPs can be represented by a
constraint graph(Fig.1a). Nodes and edges of the graph are
corresponding to variables and constraints. If the constraintck

is binary, the two nodes in the scopeSk is connected by an
edge. If the constraint is ternary or of higher order, the graph
is a hypergraph that has hyperedges for connecting 3 or more
nodes in its scope. For such cases, it is convenient to use a
dual constraint graph(Fig.1b), which represents constraints
as nodes and sets of variables as edges; an edge is drawn
between two nodes corresponding to constraintsci and cj

whenSi∩Sj 6= φ. Note that the edges are ordinary (not hyper-
) edges connecting two nodes. Thus dual constraint graphs are
ordinary graphs, not hypergraphs.

D. Dynamic CSP

A DCSP is defined as follows[3]:

DC = {CSP0, CSP1, CSP2, · · ·} · · · (6)

CSPi is a new problem such that revisedCSPi−1. The model
that combined fuzzy and dynamic CSP was proposed as a
sequence of FCSPs in the literature [2]. In this paper, we define
a DFCSP as a tupple of two FCSPs to simplify the model.

FDC = {FCSPP , FCSPF } · · · (7)

Solving DFCSP is to search optimum assignment ofFCSPF

that is changedFCSPP . In the case of real world applications,
the difference between both assignment is desired as small as
possible. We define the degree of similarityδ(v, v′) as follows:

δ(v, v′) =
∑n

i=1

n

{
1 v(i) = v′(i)
0 otherwise

· · · (8)

Where v(i) is an assignment of a variablexi. The larger
δ(v, v′) is, the more stable solution is. Such ”stability” is
recommended in a DCSP framework[3]. However, in this
paper, it is taboo to deteriorate a quality of solution (increase
constraint violations) in order that boost up the stability.
Therefore, the formula (3) is confined to the sub-evaluation.

III. T HE SRS ALGORITHM

If the domain of CSP and FCSP is a finite and discrete set,
it is possible to generate a complete search tree to exhaustively
search for solutions. However, the time complexity increases



c*

C C

CC

C

O N

O

C
O

:closed
:open

open

(root)

c*

C C

CC

C

O

OO
open

c*

C O

C

C

O

O
open

C

O

N :node

ShrinkSpread

Fig. 2. Spread and Shrink

exponentially with the size of the problems in the worst
case. Basically, the algorithms for solving CSPs are classified
into two categories: the systematic search (complete methods
based on search trees) and the local search (approximate
methods based on iterative improvement). Both have merits
and demerits. Recently, much attention has been paid to hybrid
methods for integrating both merits to solve CSPs efficiently,
but almost no attempt has been made so far for solving FCSPs.

In this section, we present the Spread-Repair-Shrink(SRS)
algorithm, which will turn out to be an efficient procedure
to obtain a good-quality approximate solution to FCSPs. The
type of hybridizing is summarized as follows:
• performing an overall local search, and using systematic

search in order to control constraint propagation for
escaping from local optima.

1) : The Basic Structure: As discussed in the previous
section, the aim of FCSPs is to maximize the degree of
satisfaction of the most violated constraints (c∗’s). To solve
the problems based on the local search framework, the Spread-
Repair (SR) algorithm developed by the authors in [4] tries
to repair a target constraintc∗ repetitively by changing the
value of a variable in its scope. When trapped in a local
maximum, SR tries to escape from the state by the operation
calledspreading, which changes the target of the repair to the
‘neighbor’ constraints surrounding the current target.

The SRS algorithm improves SR by combining the original
local search framework with a new systematic search operation
called shrinking, which is almost an inverse operation of
spreading because it changes the target back to the previous
target in order to propagate the effect of the repair toc∗. By
this process, the redundancy of the computation observed in
SR is effectively suppressed.

More precisely, given a set of most violated constraints, SRS
maintains a forest (i.e., a set of trees) consisting of search
trees which are subgraphs of the dual constraint network.

Each root node corresponds to one of the most violated
constraints, and the leaf nodes of the trees correspond to the
potential target constraints which are open to be checked for
the repair. By spreading, repairing, and shrinking the trees, the
algorithm tries to repair all thec∗’s effectively. The structure of
the algorithm, based on the open/closed-lists algorithm well-
known in the AI literature, consists of the three modesRepair,
Spread, andShrink, to be switched from one to another in the
running time.

Many other implementations of Repair operation may exist.
It depends on the problem domains and the purposes of
the application which implementation we should use. In the
experiments in Section 4, we have used SRS3[5], which
is superior to others in terms of CPU time, the quality of
solutions, and implementation cost.

We show the SRS algorithms in Fig.3. Here are some
comments in the following.

• The main program computes and passes the set of the
most violated (the worst) constraints,C, to the function
SRS. This process is repeated until SRS returnsFALSE.

• Function SRS(C) controls the search tree by appro-
priately calling procedure Spread(), Repair(node), or
Shrink() based on the scheme described in this section.
If all elements ofC were repaired, this function returns
TRUE; otherwise, it returnsFALSE.

• Procedure Spread() expands the search tree.
• Procedure Shrink() shrinks the search tree recursively.
• Function Repair(c) tries to repair constraintc. If c has

been repaired, the function returnsTRUE; otherwise, it
returnsFALSE.

A. Keeping stabilities

The structure of the spreading process of the SRS algorithm
is similar to that of the graph-search procedure well-known in
the AI literature. Corresponding to the goals (or targets) in the
graph-search are the nodes which can be locally repaired by
changing a value of a variable in SRS. When the most violated
constraintsc∗ cannot be repaired, SRS tries to find such targets
by constructing the search trees rooted atc∗. This process,
called expansionin the graph-search, is calledspreadingin
SRS.

The open and closed lists are maintained in the process. In
each loop, the procedure takes a node out of the open list as
a candidate for Repair operation. If it cannot be repaired, it is
put into the closed list. Then, the nodes adjacent to that node
are put into the open list as its children whenever they are not
still contained in the open list nor the closed list (Fig.2).

When a target constraint (node) has been found and re-
paired, SRS changes its mode Shrink, in which SRS tries to
propagate the effects of the repair back to the rootc∗. For this
purpose, its focus is moved from the repaired node to its parent
node, which is closer to the root, and all the descendants of the
new focus are removed from the open and closed lists (Fig.2).



Fig. 3. Spread-Repair-Shrink Algorithm

Then this shrinking process is repeated recursively until the
focus reaches the root or it turns out that the focus cannot
be repaired any more. Note that SRS performs efficiently by
maintaining the path fromc∗ to the repaired node in the search
tree, while our previous algorithm SR [4] has to restart the

Fig. 4. 15 variables, 10 domain’s size and 1 constraint replaced

spreading from the scratch after each repair of the target.
Thus the SRS algorithm boosts up searching efficiency

by iterative improvement that is restricted around the most
violated constraint. This means that the changing the value of
each variable is suppressible. As a result, this approach will
contributes to keep stability of solutions in DCSP schemes.

IV. EVALUATION

We have tested the performance of the SRS algorithm by
the performance is measured by a comprehensive experiment
based on randomly-generated problems with various values
for the density and tightness parameters. The performance is
measured by the stability (formula 8).

The test problems are randomly generated binary FCSPs
with parametersn, ∆, d, and t, wheren is the number of
variables,∆ is the common size of the domainsD1, . . . , Dn,
d is the density of the constraint network, andt is the average
tightness of constraints[13]. In this section, we defined andt
as follows.

d =
r

(n2 − n)/2
· · · (9)

t = 1− 1
r

r∑

k=1

[
1∏w

i=1 |Di| ·
∑

v∈
∏w

i=1
Dki

µRk(v)
]

· · · (10)

Here, Sk = {xk1 , · · · , xkw}. In the experiment, we set
n = 15, 30, 50, ∆ = 10 and d and t are chosen from the
set{0.2, 0.4, 0.6, 0.8}. For each combination of sixteen(d, t)
values, 100 problem instances have been randomly generated
and solved.

The simulation is divided in 4 steps as follows:

• get a approximate solution by using SRS method.
• select a constraint(s), and make a change so that the

satisfaction degree falls.



Fig. 5. 30 variables, 10 domain’s size and 3 constraints replaced

Fig. 6. 50 variables, 10 domain’s size and 5 constraints replaced

• apply the SRS method again, using the adjacent solution
in the way of default assignments.

• check the stability between both solutions.

The results are shown in fig.4, fig.5 and fig.6. The average
objective values are summarized in the figure. The constraint
was replaced according to the scale of the problem as 1, 3,
and 5.

When the problem becomes large-scale, stability also shows
the tendency to fall. However, in almost all instances, the
degree of stability exceeds 50%. From these results, we can
obtain a practical stable solution by using SRS algorithm.

V. CONCLUSION

We have tested the Spread-Repair-Shrink algorithm for ob-
taining stable approximate solutions to Dynamic Fuzzy Con-
straint Satisfaction Problems. The algorithm can be thought
of a new type of hybrid algorithm for combining systematic
search with local search, because SRS exploits the MAX-MIN
feature of (D)FCSP in focusing on the most violated constraint
(c∗) to be repaired efficiently by systematic Spread, Repair,
and Shrink operations on the search trees. The experimental
results show that SRS is useful when we want a relatively good
stable approximate solution for large-scale dynamic problems.

Future research topics include further improvement of SRS
in terms of quality and stable degree. Also interesting is an
extension of the idea to broader classes of soft computing such
as the ones called Soft Constraint Satisfaction Problems (Max
CSPs, Weighted CSPs, etc.) [14], [15].

REFERENCES

[1] Zs. Ruttkay, “Fuzzy constraint satisfaction”,Proceedngs of 3rd IEEE
Intern. Conf. on Fuzzy Systems, Vol. 3, pp.1263-1268, 1994.

[2] I. Miguel and Q. Shen, “FuzzyrrDFCSP and Planning”,Artificial
IntelligenceVol. 148, pp.11-52, 2003.

[3] G. Verfaillie and T. Schiex, “Solution Reuse in Dynamic Constraint Sat-
isfaction Problems”,Proceedings of the 12th National Conf. on Artificial
Intelligence, pp.307-312, 1994.

[4] Y. Sudo, M. Kurihara and T. Mitamura, “Spread-Repair Algorithm for
Solving Extended Fuzzy Constraint Statisfaction Problems”,Proceedings
of the 4th IEEE International Workshop on Soft Computing as Transdis-
ciplinary Science and Technology, pp.891-901, 2005.

[5] Y. Sudo and M. Kurihara “Spread-Repair-Shrink: A Hybrid Algorithm
for Solving Fuzzy Constraint Satisfaction Problems”,Proceedings of
the IEEE World Congress on Computational Intelligence(WCCI2006),
pp.9969-9975, 2006.

[6] S. Minton, M.D. Johnston, A.B. Philips and P. Laird, “Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling
problems”,Artificial IntelligenceVol. 58, pp.161-205, 1992.

[7] N. Jussien and O. Lhomme, “Local search with constraint propagation
and conflict-based heuristics”,Artificial Intelligence, Vol. 139, pp.21-45,
2002

[8] P. Meseguer and J. Larrosa, “Solving fuzzy constraint satisfaction prob-
lems”, Proceedings of 6th IEEE Intern. Conf. on Fuzzy Systems, Vol. 3,
pp.1233-1238, 1997

[9] R.M. Haralic, and G.L. Elliot, “Increasing Tree Search Efficiency for
Constraint Satisfaction Problems”,Artificial Intelligence, Vol. 14, pp.263-
313, 1980

[10] H.M. Adorf and M.D. Johnston, “A discrete stochastic neural networks
algorithm for constraint satisfaction problems”,Proceedings International
Joint Conference on Newral Networks, CA, 1990

[11] J.H.Y. Wong and H. Leung, “Extending GENET to Solve Fuzzy Con-
straint Satisfaction Problems”,Proceedngs of 15th National Conf. on
Artifitial Intelligence(AAAI-98), pp.380-385, 1998

[12] J. Bowen, and G. Dozier, “Solving Randomly Generated Fuzzy Con-
straint Networks Using Evolutionary/Systematic Hill-Climbing”,Pro-
ceedings of 5th IEEE Intern. Conf. on Fuzzy Systems, vol. 1, pp.226-231,
1996

[13] J. Culberson and T. Walsh, ”Tightness of Constraint Satisfaction Prob-
lems”, APES-29, 2001

[14] R.J. Wallace, “Enhancements of Branch and Bound Methods for the
Maximal Constraint Satisfaction Problems”,Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp.188-195, 1996

[15] S. Bistarelli, “Semirings for Soft Constraint Solving and Programming”
(Lecture Notes in Computer Science 2962), SpringerVerlag, 2004

[16] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird, “Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling
problems”,Artificial Intelligencevol. 58, pp.161-205, 1992


