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Abstract—A fuzzy constraint satisfaction problem (FCSP) is extension of partial, consistent assignments and backtracking.
an extension of the classical CSP, a powerful tool for mod- The other is local state-space search algorithms based on
eling various problems based on constraints among variables. jarative improvement in inconsistent, full assignments. These
Meanwhile, a dynamic CSP is a framework for modelling the . .
dynamic transform of problems. These schemes are the techniqueteChanues have bee!'] developed alm(_)st mdepepdently, but
to formulate real world problems as CSPs, more easily. recently, much attention has been paid to hybrid methods

The CSP model that combines these is already has splendidintegrating the virtues of each class of algorithms. An example
researches. The Fuzzy Local Cange algorithm is practicable js the decision-repair algorithm developed in [7], an extended

enough in small-scale problems. However, when the scale of they,arsion of a prize-winning paper presented at AAAI-2000.
problems grows to some degree, it becomes necessary to use

approximate methods. Basically, the algorithms for solving CSPs  From the viewpoint of soft computing, however, the tra-
are classified into two categories: the systematic search (completeitional CSP is too rigid to formulate real world problems.
methods based on search trees) and the local search (approxmateI der to i this situati h k has b d
methods based on iterative improvement). Both have merits and n oraer to 'mProve IS Situation, much work has e_en one
demerits. on the extensions of CSPs. The fuzzy CSP (FCSP) is one of
In this paper, we tested a hybrid, approximate method called such extensions, where constraints are represented by fuzzy
the SRS algorithm, in case of large-scale problems. SRS repeatsrelations, which admit incomplete solutions for providing

spreading and shrinking a set of search trees in order 10 gefy| information for solving real-world problems[1], [8].
repair local constraints until the satisfaction degree of the worst

constraints (which are the roots of the trees) is improved. In this Meanwhile, a dynamic CSP (DCSP) is a framework for
process, the "stability” of solutions can be maintained because modelling the dynamic transform of problems. In many real
the reassignment is locally limited. We empirically show that SRS ituati it is oft ¢ ve th ; h d b
keeps the stability of solutions rather than starting the search Siuations, | '_S often neces_sary 0 re-solve the changed prob-
from scratch. It is able to quickly get a good-quality approximate 1€m. Where, if the searching starts from scratch, the effort
and stabilized solution of sufficiently large size of problems. to solve a adjacent problem will have been wasted. The key
to efficiently solving DCSPs is to re-use the resource such
adjacent information as much as possible. The effectiveness in
A constraintis a restriction on a space of possibilitiesre-use the adjacent solution in the way of default assignments,
it is a piece of knowledge that narrows the scope of theémd min-conflict heuristics are known[2], [3].
space. Because constraints arise naturally in most areas . : . :
P y 0épread-Repalr—Shrmk (SRS) algorithm is a FCSP solver
human endeavor, they are the most general means for %r-

I. INTRODUCTION

X L . . _developed by the authors [5]. The evaluation function of FC-
mulating regularities that govern our computational, physic

. . . o Ps is defined as maximizing satisfaction degree of the most
biological, and social worlds. Many problems arising in suc

domains can be naturally modeled as constraint satisfacti\(l)'oIated constraint. The SRS algorithm boosts up searching

problems (CSPs). A CSP consists of a finite sevarfables ef‘rﬂmency py iterative |mprovement that is re.stncted_ around
; . - : the most violated constraint. This approach will contributes to
each associated with a finidomainof values, and a set of

constraintsamong the variables. solutionis an assignment of keep stability of solutions in DCSPs. Based on comprehen-

a value to every variable such that all constraints are satisfigd experiments by using randomly-generated problems with

. . fious sets of parameter settings, we show that SRS is more
Since CSPs are NP-complete problems in general, no e |‘f . . . -
. . . . ective than starting the search from scratch, in sufficiently
cient and complete algorithms for solving CSPs exist and tfie ;
) . B ._large size of problems.
increase in the worst-case computation time is exponential h
the size of the problems. In most of the cases, however, weThis paper is organized as follows. In Section 2, we briefly
can obtain a solution in practical time by using incompleteview the traditional CSP , the fuzzy CSP and the dynamic
algorithms. CSP. In Section 3, we present the SRS algorithms. In Section 4,

CSP algorithms are usually categorized into two classege show the experimental results and discuss the performance

One of them is tree search algorithms based on systematiche algorithm. Section 5 contains a summary of our work.



Il. Fuzzy, DYNAMIC CSP (a) (b)

A. Classical CSP X1 ¢ X €
A CSP is defined by a set of variablés = {z;}* , that
take values from finite domain® = {D,}?_; under a set of
constraintsC' = {c; }}_,, wherec; denotes a relatiod;, on (%) c3 Cq <:> c
a subsetS; (S C X) of X. 2 C4
Ry € Dy, X --- X Dy, for S, ={ag,, -, Tk, } X3 Xq C3
Sy is called thescopeof Ry.. If w = 1,2, or 3, then the relation Fig. 1. Constraint Graph and Dual Constraint Graph
is called aunary, binary,or ternary relation, respectively.
B. Fuzzy CSP C. Constraint Networks

) i _ . The structure of CSPs and FCSPs can be represented by a
A Fuzzy CSP(FCSP) is defined as an extension of Class'%lnstraint graph(Fig.1a). Nodes and edges of the graph are

csp _Where. constralntsc'are represente_d by fuzzy rel""t'onst:orresponding to variables and constraints. If the constegint
Ry with their membership functions defined by is binary, the two nodes in the scopg is connected by an
edge. If the constraint is ternary or of higher order, the graph
R, : Hmesk D; — [0,1] () sa hypergraph that has hyperedges for connecting 3 or more
nodes in its scope. For such cases, it is convenient to use a
dual constraint graph(Fig.1b), which represents constraints
as nodes and sets of variables as edges; an edge is drawn

In other words, a membership valyg;(vs, ) of an assign-
mentuvg, to the variables in the scop®, of a constraint’},

takes|0, 1]. The membership value is also called tegree pawveen two nodes corresponding to constraintand c;

of satisfaction whens$;NS; # ¢. Note that the edges are ordinary (not hyper-

The fuzzy conjunction (AND)C, A C; of two constraints ) eqges connecting two nodes. Thus dual constraint graphs are
Ck andC; is the fuzzy relationR;, N R; with scopesSy. U Si  grdinary graphs, not hypergraphs.

and membership function
D. Dynamic CSP

pRe N Ri(v) = min(uRy(v[Sk]), pRi(v[S]))  ---(2) A DCSP is defined as follows|[3]:

wherew[S] is theprojection Since the FCSP requires the sat- DC ={CSP,,CSP,,CSP,---} - (6)

isfaction of the fuzzy conjunction of all the fuzzy constraints SP, is a new problem such that reviséts P,_;. The model

the degree of satisfaction of the whole FCSP is defined as the . .
o : ; at combined fuzzy and dynamic CSP was proposed as a
minimum degree of satisfaction as follows.

sequence of FCSPs in the literature [2]. In this paper, we define
r a DFCSP as a tupple of two FCSPs to simplify the model.
R = mi Ry (v[S - (3
#IQI k(v) 1§k“£r(ﬂ k(V[Sk])) 3) FDC = {FCSPp, FCSPr} o (7)
In order to simplify the notation, we denote the minimunp©!ving DFCSP is to search optimum assignment'6fs Pr

degree of satisfaction of the whole FCSP, giverby Cpin: that is changed'C'S Pp. In the case of real world applications,
the difference between both assignment is desired as small as

Conin (V) = min (uRy(v[Sk])) ...(4) possible. We define the degree of similarty, ') as follows:
1<k<r "
: : . S : S(oa) = izt [ 1v(i)=0'(d) 3
Givenwv, any constraint;, that gives this minimum is denoted (v,0) = “n ) 0 otherwise - (8)

by ¢* and called anost violated constraintf C,,;,(v) > 0, o ) .
v is called asolutionof the FCSP. A solution that maximizes'/nere v(i) is an assignment of a variable;. The larger
d(v,v") is, the more stable solution is. Such "stability” is

Cmin(v) (i.€., the degree of satisfaction of) is called an ) ) >
optimal solution Therefore, a FCSP is regarded as an opiccommended in a DCSP framework[3]. However, in this
er, it is taboo to deteriorate a quality of solution (increase

mization problem which requires the search for an assignm

v that maximizes the minimum degree of satisfaction of gfgPnstraint violations) in order that boost up the stability.

constraints. Thus the optimal value of the objective functioh€refore, the formula (3) is confined to the sub-evaluation.

(4) is formulated as follows. Il. THE SRS ALGORITHM
. If the domain of CSP and FCSP is a finite and discrete set,
maz( min (uRy(v[St]))) (p) e C .
v 1<k<r it is possible to generate a complete search tree to exhaustively

search for solutions. However, the time complexity increases



Each root node corresponds to one of the most violated
constraints, and the leaf nodes of the trees correspond to the
potential target constraints which are open to be checked for
the repair. By spreading, repairing, and shrinking the trees, the
algorithm tries to repair all the*’s effectively. The structure of
the algorithm, based on the open/closed-lists algorithm well-
known in the Al literature, consists of the three mo&egpair,
Spread andShrink to be switched from one to another in the
running time.

Many other implementations of Repair operation may exist.
It depends on the problem domains and the purposes of
the application which implementation we should use. In the
experiments in Section 4, we have used SRS3[5], which
is superior to others in terms of CPU time, the quality of
solutions, and implementation cost.

We show the SRS algorithms in Fig.3. Here are some
comments in the following.

‘closed
[0] :open
|E ‘node

Fig. 2.

Spread and Shrink )
o The main program computes and passes the set of the

most violated (the worst) constraints, to the function
SRS. This process is repeated until SRS retlAESE
Function SRS{) controls the search tree by appro-

exponentially with the size of the problems in the worst
case. Basically, the algorithms for solving CSPs are classifieds

into two categories: the systematic search (complete methods
based on search trees) and the local search (approximate
methods based on iterative improvement). Both have merits
and demerits. Recently, much attention has been paid to hybrid
methods for integrating both merits to solve CSPs efficiently, o
but almost no attempt has been made so far for solving FCSPs
In this section, we present the Spread-Repair-Shrink(SRS)
algorithm, which will turn out to be an efficient procedure
to obtain a good-quality approximate solution to FCSPs. The

priately calling procedure Spread(), Repairde), or
Shrink() based on the scheme described in this section.
If all elements ofC' were repaired, this function returns
TRUE otherwise, it return$ALSE

Procedure Spread() expands the search tree.

Procedure Shrink() shrinks the search tree recursively.
Function Repaik) tries to repair constraint. If ¢ has
been repaired, the function returiRUE otherwise, it
returnsFALSE

type of hybridizing is summarized as follows:

« performing an overall local search, and using systematic

search in order to control constraint propagation fak. Keeping stabilities
escaping from local optima.
The structure of the spreading process of the SRS algorithm

1) : The Basic Structure: As discussed in the previod§ similgr to that of the graph_—search procedure weII-knO\_/vn in
section, the aim of FCSPs is to maximize the degree Al literature. Corresponding t.o the goals (or targets).ln the
satisfaction of the most violated constraints’g). To solve graph-_search are the ”09'6‘5 V\_’h'Ch can be locally repa_lred by
the problems based on the local search framework, the SpreJignding a value of a variable in SRS. When the most violated
Repair (SR) algorithm developed by the authors in [4] trigonstraints:* _cannot be repaired, SRS tries to flqd such targets
to repair a target constraint* repetitively by changing the PY constructing the search trees rootedcat This process,
value of a variable in its scope. When trapped in a loc§p!€d expansionin the graph-search, is callespreadingin
maximum, SR tries to escape from the state by the operati RS-
called spreading which changes the target of the repair to the The open and closed lists are maintained in the process. In
‘neighbor’ constraints surrounding the current target. each loop, the procedure takes a node out of the open list as

The SRS algorithm improves SR by combining the origin candidate for Repair operation. If it cannot be repaired, it is
local search framework with a new systematic search operati@f into the closed list. Then, the nodes adjacent to that node
called shrinking which is almost an inverse operation ofre put into the open list as its children whenever they are not
spreading because it changes the target back to the previdiils contained in the open list nor the closed list (Fig.2).
target in order to propagate the effect of the repair*toBy When a target constraint (node) has been found and re-
this process, the redundancy of the computation observedpaired, SRS changes its mode Shrink, in which SRS tries to
SR is effectively suppressed. propagate the effects of the repair back to the rdofor this

More precisely, given a set of most violated constraints, SRfBrpose, its focus is moved from the repaired node to its parent
maintains a forest (i.e., a set of trees) consisting of seancbde, which is closer to the root, and all the descendants of the
trees which are subgraphs of the dual constraint networlew focus are removed from the open and closed lists (Fig.2).



Function SRS(constraints C)
{input C: a set of the worst constraints}
closed — ¢.
open «— C.
While C # ¢ and open # ¢ do
node « the first element of open.
open «— open \ node.
If not Repair(node) then
Spread()
Else if node € C then
C « C\ {node}.
Else if Repair(the parent of node) then
Shrink( )
Else
Spread()
End if
Sort open by heuristic h().
End while
If C = ¢ then return TRUE
Else return FALSE
End function

Procedure Spread( )

closed « closed U node.

open < open U neighbors(node) \ closed.
End procedure

Procedure Shrink( )
node « parent of node.
open «— open \ the descendants of node.
closed « closed \ descendants of node.
If node € C then
C« C\ {node}.
Else
open «— open U node.
If Repair(the parent of node) then Shrink( )
End if
End procedure

Function Repair(constraint c)
Try to repair c.
If repaired then
return TRUE
Else
return FALSE
End if
End function

Begin program
Do while SRS(worst constraints).
End program

Fig. 3. Spread-Repair-Shrink Algorithm
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Fig. 4. 15 variables, 10 domain’s size and 1 constraint replaced

spreading from the scratch after each repair of the target.
Thus the SRS algorithm boosts up searching efficiency
by iterative improvement that is restricted around the most
violated constraint. This means that the changing the value of
each variable is suppressible. As a result, this approach will
contributes to keep stability of solutions in DCSP schemes.

IV. EVALUATION

We have tested the performance of the SRS algorithm by
the performance is measured by a comprehensive experiment
based on randomly-generated problems with various values
for the density and tightness parameters. The performance is
measured by the stability (formula 8).

The test problems are randomly generated binary FCSPs
with parametersy, A, d, and¢, wheren is the number of
variables,A is the common size of the domai, ..., D,,

d is the density of the constraint network, anib the average
tightness of constraints[13]. In this section, we definend¢
as follows.

d= a2 - (9)
1< 1
t:l—;z 1= D:] Z pRe(v)| -+ (10)
k=1 i=1 v UGHZU:l Dy,
Here, S, = {ag,, - ,zx,}. In the experiment, we set

n = 15,30,50, A = 10 andd and ¢ are chosen from the
set{0.2,0.4,0.6,0.8}. For each combination of sixtedd, )
values, 100 problem instances have been randomly generated

Then this shrinking process is repeated recursively until ti@d solved.

focus reaches the root or it turns out that the focus cannotThe simulation is divided in 4 steps as follows:

be repaired any more. Note that SRS performs efficiently bye. get a approximate solution by using SRS method.
maintaining the path from* to the repaired node in the search « select a constraint(s), and make a change so that the
tree, while our previous algorithm SR [4] has to restart the satisfaction degree falls.



V. CONCLUSION

We have tested the Spread-Repair-Shrink algorithm for ob-
taining stable approximate solutions to Dynamic Fuzzy Con-
straint Satisfaction Problems. The algorithm can be thought
of a new type of hybrid algorithm for combining systematic
search with local search, because SRS exploits the MAX-MIN
feature of (D)FCSP in focusing on the most violated constraint
(c*) to be repaired efficiently by systematic Spread, Repair,
and Shrink operations on the search trees. The experimental
results show that SRS is useful when we want a relatively good
0.3 oy stable approximate solution for large-scale dynamic problems.

m tightness 0.6 . . .
ST « tightness 0.4 Future research topics include further improvement of SRS

v tightness 0.2 in terms of quality and stable degree. Also interesting is an
L extension of the idea to broader classes of soft computing such
0 \ \ | as the ones called Soft Constraint Satisfaction Problems (Max
0.2 0.4 0.6 0.8 CSPs, Weighted CSPs, etc.) [14], [15].

network density

stability
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