KES IDT 2009

A Proposal of Context-Aware Service Composition Method Based on Analytic Hierarchy Process

April 23, 2009

Yusuke Koumoto, Hidetoshi Nonaka, and Takuto Yanagida

Graduate School of Information Science and Technology Hokkaido University, Japan

Context-Aware Services

- have been attracting attention as an approach to improving the usability of computer-mediated services.
- are expected to become more effective and beneficial, especially in ubiquitous computing environments.
- are used for meaning that specific services are provided for users' desired results according to the users' contexts.

• Context is any information that can be used to characterize the situation of entities.

- For example:
 - Physical information
 - (ex.) User position, Noise, and Pressure.
 - User's information
 - (ex.) Taste, Habit, and Social interaction

An example of Context-aware services:

Context aware mobile phone

The appropriate mean changes according to user's context (place, situation, ...).

- In a train
 At a living room
- → To notify with **Vibrator**
- → To notify with **Speaker**

• The goal of context-aware service:

To provide smart support anywhere, anytime, for everything.

- In this paper,
 - we propose a new service composition method with the analytic hierarchy process (AHP).
 - we discuss its availability and practicability,
 how it can deal with qualitative factor and treat wide variety of context entities.

- Service composition:
 - composing multiple combinable services, contents, and devices developed in advance, according to dynamically-changed contexts.

Context-aware service composition procedure:

- 1. acquire some sort of data from circumstances with its sensors
- 2. determine service compositions and behaviors based on the contexts
 - 3. combine service elements and control its service behaviors

Overview

Context-Aware Service Composition

To combine context, service contents, and service/device elements in real time

With introducing the AHP, we can systematically determine service compositions and behaviors.

Analytic Hierarchy Process (AHP)

• The AHP [1]:

- is a structured technique for dealing with complex decisions.
- provides a comprehensive and rational framework for structuring a decision problem,
 - for representing and quantifying its elements,
 - for relating those elements to overall goals, and
 - for evaluating alternative solutions.

[1] T. L. Saaty, "The Analytic Hierarchy Process", McGraw-Hill, 1980.

Extract Elements

- Context is
 - data all related services, and
 - obtained through the use of sensors.
 - (ex.) User context, and Physical context

(In this paper, we assume that sensors are able to obtain context information)

- Service is
 - a content that is provided for users, and
 - a goal in terms of AHP.
- Service/device elements are recombined.

Service Composition Example

- (ex) Context-Aware "to notify a user receiving phone call"
 - Contexts affecting services:
 - Distance between user and device
 - Awareness (ambient noise, and user's situation)
 - User's tastes
 - Service contents:
 - To notify a user receiving phone call (deciding the using device)
 - Capable device to execute the services:
 - Speaker, vibrator, and display

To Create a Hierarchical Structure

Abstracted elements decompose a hierarchical structure.

Calculating Overall Priorities

• Overall priorities are computed by multiplication of importance degrees of *alternatives*, *criteria*, and dynamically-changed *context data*.

$$X = \begin{bmatrix} x_{\text{Speaker}} \\ x_{\text{Vibrator}} \\ x_{\text{Display}} \end{bmatrix} = \begin{bmatrix} W_{\text{Distance}} & W_{\text{Awareness}} & W_{\text{Taste}} \end{bmatrix} CW$$
Importance degree of alternatives

Dynamically changed context data

Importance degree of criteria

X: importance degree of goal (overall priorities)

C: context data

Prototype System (Overview)

Input

- Designing Service(service hierarchy)
- User setting(pairwise comparison)
- Context(changing in real-time)

Output

Service composition description

In this prototype system, context server and service client are virtual implementation.

Experiments (Setting)

- The prototype system calculate a representative service example of notifying a user receiving a phone call.
- We created pairwise comparisons by two representative users, as an input.
- We created virtual situations by using expressed value according to whether user-device distance is far or not, and user awareness level is high or low.
- We examined that whether each users' characteristic reflected the output, depending on the dynamically-changed context.

Experiments(results of User A)

To notify	1/9	1/7	$\frac{1}{5}$	1/3	1	3	5	7	9	
distance						0				awareness
distance							0			taste
awareness					0					taste

distance

awareness

awareness	1/9	1/7	1/5	1/3	1	3	5	7	9	
speaker					0					vibrator
speaker			0							display
vibrator			0							display

taste

$$W_A = \begin{bmatrix} 0.1140 \\ 0.4054 \end{bmatrix},$$

$$\text{taste} \quad \begin{cases} 1/9 & 1/7 & 1/5 & 1/3 & 1/3 & 5/7 & 9 \\ \text{speaker} & O & \text{vibrator} \\ \text{vibrator} & O & \text{display} \\ \text{display} & \text{display} \\ \text{$$

$$W_A = \begin{vmatrix} 0.1140 \\ 0.4054 \\ 0.4806 \end{vmatrix},$$

$$\begin{bmatrix} W_{\text{Distance}} & W_{\text{Awareness}} & W_{\text{Taste}} \end{bmatrix} = \begin{bmatrix} 0.6554 & 0.6491 & 0.0704 \\ 0.0549 & 0.2790 & 0.7514 \\ 0.2897 & 0.0719 & 0.1782 \end{bmatrix}$$

User A:

high regard of taste and awareness. a taste for using vibrator.

Distance

Low High

Experiments(results of User B)

distance

awareness

taste

$$W_{B} = \begin{bmatrix} 0.1047 \\ 0.6370 \\ 0.2583 \end{bmatrix},$$
 speaker Spea

$$egin{bmatrix} W_{
m Distance} & W_{
m Awareness} \end{aligned}$$

$$\begin{bmatrix} W_{\text{Distance}} & W_{\text{Awareness}} & W_{\text{Taste}} \end{bmatrix} = \begin{bmatrix} 0.7143 & 0.4054 & 0.0658 \\ 0.1429 & 0.4806 & 0.1488 \\ 0.1429 & 0.1140 & 0.7854 \end{bmatrix}$$

User B:

high regard of awareness. a strong taste for using display.

Experimental result

- Consideration for experiments:
 - These outputs fit users' characteristic to some extent.
 - However, we need to carry out further investigations whether the boundary lines are correct.

Conclusion

- We have presented the method for contextaware service composition based on AHP, and implemented a prototype system.
- We have examined the availability of the method using sample data, and have confirmed that the method can output reasonable results for each sample context.

Future Work

- Further work is
 - to apply this method to real-world situations,
 such as home network, wireless mesh network,
 and intelligent building,
 - to compare it to other methods, and
 - to evaluate the effectiveness quantitatively.

IDT '09

A Proposal of Context-Aware Service Composition Method Based on Analytic Hierarchy Process

Yusuke Koumoto, Hidetoshi Nonaka, and Takuto Yanagida

Graduate School of Information Science and Technology Hokkaido University, Japan

