Class Responsibility
Assighment
as
Fuzzy Constraint
Satisfaction

Shinpei Hayashi', Takuto Yanagida*,

Motoshi Saeki®, and Hidetoshi Mimura#*
TTokyo Institute of Technology = *Shizuoka University

Class Responsibilit
Assignment (CRA

® Deciding a mapping A: M 2 K

Knowing responsibilities: Player
name board | MAX w
piece location

dice faceValue \ Die

Doing responsibilities:
Die() Player()

takeTurn()
getFaceValue() .
setLocation() !0 Piece
tLocati getName() Piece()
etLocation
J on() getLocation()

Responsibilities (M)

Assignment (A)

Classes (K) A

Towards Quality CRA

® Example criterion:

CRA |
Die
MAX Player
faceValue name
Die() piece
getFaceValue(), board
6, dice
)
- \\ Player()
Piece (| takeTurn()
location \\Q‘\\ getlLocation()
: \ getName()
P
iece() | sroll()

getLocation() 4
setLocation()"|

CRA 2
Die
MAX Player
faceValue name
Die() piece
getFaceValue(), board
roll() dice
- Player()
Piece takeTurn()
location getLocation()
Piece() | ge'IcIName()
getLocation() 4 roll()

setLocation()"|

A

Challenges for
Automating CRA

® CRA is over-constrained

— Low Coupling: The distance between two classes
having related responsibilities should be short.

— High Cohesion: The relation between two
responsibilities in close classes should be close.

A realistic solution needed,
which satisfies constraints to some extent

Toward Interactive Tool

® Support of trial-and-error in design process
— Stability:
* "I want to improve my manually-assigned model.
Do not DRASTICALLY modify it!"
— Users Intention:

* "I found that these two responsibilities should be
assigned to the same class / different classes"

flexibly configurable technique needed

y.

Our Approach

® Formulating CRA using Fuzzy Constraint
Satisfaction Problem (FCSP)

— Combinational search problem in Al field
— Benefits

* No need to define a monolithic evaluation
function

—Each criterion is naturally represented
as fuzzy constraints

* Usage of well-maintained solvers

FCSP

® Variable: X = { x,, X, ..., X, }

e Domain:D={D,D,,..,D, }
® Constraint: C = { ¢, ¢, ...,C, }

—inc. Unary and binary constraints

— Each constraint has

its satisfaction degree (U R) [O, 1]

CYETe

® Obijective:

— Maximizing min UR
ceC

D

D

X

2

C

2

D

X

3

y.

Formulation

® Variable X < Responsibility m € M
® Domain D ¢ € Set of classes K

e Constraint ¢ .7 € Assignment strategy

ClassA C4
ClassB

roll ()
C Cy
@ @
. -x2 < > x3
setLocation () C, takeTurn ()

ClassA ClassA
ClassB ClassB sl
(3 responsibilities)

Given Information

® Normalized two measures are used

— Class Distance cd : K2 2 [0, I]
0 |
> cd(k,, k)
A A
When k, = k, When the distance between

k, and k, is the farthest

— Responsibility Relevance mr : M? — [0, 1]
0 |
| > mr(m,, m,)

A A

When m, is no When the relevance between

relevance with m, m, and m, is the highest

Constraints

e c': Low Coupling

@ relevant responsibilities are in distant classes

e c"<: High Cohesion

® irrelevant responsibilities are in closer classes

® c°: Stability

@ responsibilities moved from the initial assignment
e cs2me diff: Jsers Intention

distance between the specified responsibilities does
not follow

c'“: Low Coupling

® Binary constraint for a pair of variables

® Satisfaction degree decreases when
relevant responsibilities are in distant classes

N
OO\
AN

Satisfaction
degree
g/\ PN

" (Whenw = 1)
For m, and m,,

UR (k) ky) = { —mr(m |, my)cd(k;, ky) + 1 }* A

ch<: High Cohesion

® Binary constraint for a pair of variables

® Satisfaction degree decreases when

irrelevant responsibilities are in closer classes
L

/ /
////////////
////

Satisfaction
degree
g/\

///////
//////////

mr . (Whenw= 1)

For m, and m,,

UR (K, ky) = { (I —mr(m, my))cd(k, k,) + mr(m,, m,) }*

A

cs: Stability

® Unary constraint for each variable

® Satisfaction degree decreases when the class to
which a responsibility belongs in the current
assignment is far from that in the given
assignment

For m, | #R(k) = { | — cd(kgngp k) }¥

csame [qdiff s |ntention

® Binary constraint for each pair of variables

® Satisfaction degree decreases based on the
distance between the target classes

LR same(k, ky) = { | —cd(k, ky) }*
LR diff(k, ky) = cd(k, k,)¥

For m, and m,,

Example: Constraints

ClassA
ClassB

roll ()

setLocation () takeTurn ()

ClassA ClassA
ClassB ClassB

Example: Constraints

ssssss
ssssss

* Low Coupling roll ()
* High Cohesion
* (Intention)
setLocation|() i ; takeTurn ()

ssssssssssss
ssssssssssss

Example: Constraints

ssssss
ssssss

roll ()

O Q Stability

setLocation|() takeTurn ()

ssssssssssss
ssssssssssss

Evaluation Questions
e EQ I:

How accurately does our technique assign responsibilities from
scratch?

e EQ 2:

How accurately does our technique fix the assignment of
responsibilities if an initial assignment is given?

e EQ 3:

Does our technique fix the assignment
when users’ intentions are given?

e EQ 4:

Is the calculation of the assignment performed fast enough?

Summary of Evaluation
e EQ I:

How accurately does our technique
assign responsibilities from scratch?

e EQ 2:

How accurately does our technique
fix the assignment of responsibilities
if an initial assignment is given?

e EQ 3:

Does our technique fix the assignment
when users’ intentions are given?

e EQ 4:

Is the calculation of the assignment
performed fast enough?

Summary of Evaluation

o EQ |[:
How accurately does our technique Monopoly: 69%
assign responsibilities from scratch? NextGenPos: 33%
e EFQ 2

How accurately does our technique
fix the assignment of responsibilities Monopoly: 58%

if an initial assignment is given? NextGenPos: 73%
e EQ 3

Does our technique fix the assignment

when users’ intentions are given? 2 of 3 constraints hold.
e EQ 4

Is the calculation of the assignment
performed fast enough? e.g., Fix: <Ims

Experimental Setup

® Example models from a CRA textbook

System i classes ____|# responsibilities

Monopoly 6 26
NextGenPos 9 30

® Reverse engineering from source code
— Examples and oracles were extracted from textbook

— Class distance cd and Responsibility relevance mr
were measured based on the oracle

Y.

EQ | (from scratch)

How accurately does our technique assign responsibilities from scratch?

® Prepared an empty model and assigned all the
responsibilities

Class 2 (Die) Class 2 (Die)

Die()

roll()

getFaceValue()

MonopolyGame() [MonopolyGame]
Player() [Player]

takeTurn() [Player]

getLocation() [Player]

Class 1 (Board) Class 1 (Board)
Class 3 (MonopolyGame) Class 3 (MonopolyGame) | |Board()
getSquare()
— playGame() — getStartSquare()
getPlayers() buildSquares()
— playRound() build()
| | linkSquares()
link()
Class 5 (Player) Class 5 (Player)

Square() [Square]
getName() [Square]

getindex() [Square]

Class 4 (Piece) Class 4 (Piece)
Class 6 (Square) Class 6 (Square)
Piece()
getLocation() setNextSquare()
setLocation() getNextSquare()
getName() [Player]

EQ | (from scratch)

How accurately does our technique assign responsibilities from scratch?

Monopoly:

69%

Class 2 (Die)

Die()

roll()

getFaceValue()

MonopolyGame() [MonopolyGame]
Player() [Player]

takeTurn() [Player]

getLocation() [Player]

Class 3 (MonopolyGame)

getPlayers()
playRound()

Class 5 (Player)

Square() [Square]
getName() [Square]

getindex() [Square]

Class 4 (Piece)

Piece()

NextGenPos: 33%

Class 7 (Sale)

Class 3 (Payment)

Payment()

becomeComplete()
isComplete()

Class 8 (SaleLineltem)

getRegister() [Store]

Class 1 (Board)

Class 5 (ProductDescription)

playGame() —

Board()
getSquare()
getStartSquare()
buildSquares()
build()
linkSquares()
link()

getProductDescription() [ProductCatalog]
Register() [Register]

endSale() [Register]

enterltem() [Register]

makeNewSale() [Register]
makePayment() [Register]
makeLineltem() [Sale]

getAmount()
makePayment() [Sale]

Class 2 (Money)

Money()
add()

Class 4 (ProductCatalog)

minus()

times()
getBalance() [Sale]
getTotal() [Sale]

Class 6 (Square)

ProductDescription() [ProductDescription]
getltemID() [ProductDescription]
getPrice() [ProductDescription]
getDescription() [ProductDescription]

Class 1 (ItemlID)

i ItemID()

toString()
ProductCatalog() [ProductCatalog]

getLocation()
setLocation()
getName() [Player]

setNextSquare()
getNextSquare()

Incorrect assignment [Oracle]

Class 9 (Store)

Class 6 (Register)

SalesLineltem() [SalesLineltem]
getSubTotal() [SalesLineltem]

Sale() [Sale] ‘

EQ 2 (w/ initial model)

How accurately does our technique fix the assisnment of resbonsibilities
if an initial assisnment is given?

® Detached each responsibility and re-assigned it

Class 2 (Die)
Die()
roll()
getFaceValue() b p
7,
| s,
Class 3 (MonopolyGame) Class 1 (Board) Q(/af@s . Res u It
MonopolyGame() BoaSrd() 4,
playGame() getSquare() o
getPlayers() —ggt_sla_rt_sﬂyége() _ M ono P o) Iy. 5 8 /O
playRound() I BJIER) ————— ! M
linkSquares()
Class 5 (Player) link() (I 5 res P.)
T
akeTurn(. o
getocation) — NextGenPos: 73%
getName()
|
Class 4 (Pi
- ass 4 (Flece) Class 6 (Square) (22 res P’)
Piece()
getLocation() Square()
setLocation() getName()
getindex()
setNextSquare()

getNextSquare() !

EQ 3 (intention)

Does our technique fix the assisnment when users’ intentions are given?

® Added 3 intention constraints in Monopoly

Class 2 (Die)

Cd iff Die()

roll()
<

getFaceValue()

MonopolyGame() [MonopolyGame]

Player() [Player]
takeTurn() [Player]

getLocation() [Player]

Class 1 (Board)

Class 3 (MonopolyGame)

Board()

playGame()
getPlayers()

playRound()

getSquare()

— getStartSquare()
buildSquares()
build()

same
C

linkSquares()

Class 5 (Player)

link()

Square() [Square]
getName() [Square]

getindex() [Square]

Class 4 (Piece)

Piece()
getLocation()

setLocation()

getName() [Player]

@

Class G&Square)

setNextSquare()
getNextSquare()

—> 2 of 3 were worked well

Users intention-based
constraints are feasible. A

EQ 4: Execution Time

Is the calculation of the assisnment berformed fast enough?

e Implementation

— Our FCSP library w/ fuzzy forward checking
— on Java 7 (Window 7, Intel Core i7,2.93GHz)

® Result

— Experiment for EQ | (# actual usage)
* Monopoly: 20 ms
* NextGenPos: 8550 ms

— Experiment for EQ 2

e < | ms

— Experiment for EQ 3
: 2po s Yes, fast enough.

A

Discussion/Conclusion

EQ 2:
improvement of
existing model

EQ 3:
Addition of
users intention

EQ 4:

Execution time

!

Might be feasible to develop

an interactive CASE tool for supporting CRA

]

(Flexibility by formulating CRA as fuzzy CSP)

A

Future Work

® Richer case studies for confirming scalability

— Applying our technique to real systems
® Use of other software metrics
—e.g., LCOM*

® Expressing other strategies as fuzzy constraints
—e.g., GRASP

=== Implementing CASE tool for designers

A

Class Responsibilit
Assignment (CRA

® Deciding a mapping A: M 2> K

Knowing responsibilities:
name board
piece location

dice faceValue

Doing responsibilities:

Die() Player()

MAX ——

\

takeTurn()

getFaceValue()
setLocation() !I0)

getName()

getlLocation() Piece()

getlLocation()

Responsibilities (M) Classes (K)

Assignment (A)

Constraints

® ¢ Low Coupling

@ relevant responsibilities are in distant classes

® ¢": High Cohesion

@ irrelevant responsibilities are in closer classes

® c: Stability

@ responsibilities move from the initial assignment
o csame cdiff. Users Intention

Distance between the specified responsibilities do
not follow

Formulation

® Variable

® Domain

x || € Responsibility m € M
D . € Set of classes K
e Constraint ¢ .7 € Assignment strategy

[ClassA)
\ClassB/

roll()

) &)
@ @
setLocation () ¥ *3

S takeTurn ()

‘//ClassA\'y‘ “/ClassA\\
\ ClassB / _ ClassB / s
T N (3 responsibilities)

Discussion

EQ 2: EQ 3: EQ 4:

improvement of | | Addition of

users intention

existing model Execution time

Might be feasible to develop
an interactive CASE tool for supporting CRA

(Flexibility by formulating CRA as fuzzy CSP)

Credits

® Photo by teamaskins

— CRC Cards | Flickr
http://www.flickr.com/photos/teamaskins/ | 30003950/

