
Class Responsibility
Assignment ���

as���
Fuzzy Constraint

Satisfaction

Shinpei Hayashi†, Takuto Yanagida‡,
Motoshi Saeki†, and Hidetoshi Mimura‡

†Tokyo Institute of Technology ‡Shizuoka University

Class Responsibility
Assignment (CRA)

l Deciding a mapping A : M à K

2

MAX

Piece()

name

faceValue

Die()

roll()
getFaceValue()

location

getLocation()
setLocation()

Player()

board

getLocation()

piece
dice

takeTurn()

getName()

Knowing responsibilities:

Doing responsibilities:

Responsibilities (M) Classes (K)

A
ss

ig
nm

en
t

(A
)

Player

Die

Piece

Towards Quality CRA
l Example criterion: Low Coupling

3

Die
MAX

faceValue
Die()

getFaceValue()

Piece
location
Piece()

getLocation()
setLocation()

Player
name
piece
board
dice
Player()
takeTurn()
getLocation()
getName()
roll()

Die
MAX

faceValue
Die()

getFaceValue()
roll()

Piece
location
Piece()

getLocation()
setLocation()

Player
name
piece
board
dice
Player()
takeTurn()
getLocation()
getName()
roll()

CRA 1 CRA 2

Challenges for
Automating CRA

l CRA is over-constrained
– Low Coupling: The distance between two classes

having related responsibilities should be short.
– High Cohesion: The relation between two

responsibilities in close classes should be close.

4

Tr
ad
e-‐‑‒
off
�

A realistic solution needed,
which satisfies constraints to some extent

Toward Interactive Tool
l Support of trial-and-error in design process

– Stability:
•  "I want to improve my manually-assigned model.

 Do not DRASTICALLY modify it!"
– Users Intention:

•  "I found that these two responsibilities should be
assigned to the same class / different classes"

5

flexibly configurable technique needed

Our Approach
l Formulating CRA using Fuzzy Constraint

Satisfaction Problem (FCSP)
– Combinational search problem in AI field
– Benefits

• No need to define a monolithic evaluation
function

– Each criterion is naturally represented
as fuzzy constraints

• Usage of well-maintained solvers

6

FCSP
l Variable: X = { x1, x2, ..., xn }
l Domain: D = { D1, D2, ..., Dn }
l Constraint: C = { c1, c2, ..., cr }

–  inc. Unary and binary constraints
– Each constraint has

its satisfaction degree (μR) [0, 1]

l Objective:
– Maximizing min μR

7

c1

c2

x1

x2 x3

c4

c3

c6 c5

D1

D3 D2

c ∈ C

Formulation
l Variable x
l Domain D
l Constraint c

8

roll()

setLocation() takeTurn()

c1

c2

x1

x2 x3

c4 ClassA
ClassB

c3

c6 c5

ClassA
ClassB

ClassA
ClassB

(3 responsibilities)

ß Responsibility m ∈ M
ß Set of classes K
ß Assignment strategy

Given Information
l Normalized two measures are used

–  Class Distance cd : K2 à [0, 1]

–  Responsibility Relevance mr : M2 → [0, 1]

9

0 1

When k1 = k2

cd(k1, k2)
When the distance between
k1 and k2 is the farthest

0 1

When m1 is no
relevance with m2

mr(m1, m2)

When the relevance between
m1 and m2 is the highest

Constraints
l  clc: Low Coupling

– relevant responsibilities are in distant classes

l  chc: High Cohesion
–  irrelevant responsibilities are in closer classes

l  cs: Stability
– responsibilities moved from the initial assignment

l  csame, cdiff: Users Intention
– distance between the specified responsibilities does

not follow

10

clc: Low Coupling
l  Binary constraint for a pair of variables
l  Satisfaction degree decreases when

relevant responsibilities are in distant classes

11

cd

1

1

Satisfaction
degree

0

1

1 1

mr

μRc(k1, k2) = { –mr(m1, m2)cd(k1, k2) + 1 }w
For m1 and m2,

(When w = 1)

chc: High Cohesion
l  Binary constraint for a pair of variables
l  Satisfaction degree decreases when

irrelevant responsibilities are in closer classes

12
μRc(k1, k2) = { (1 – mr(m1, m2))cd(k1, k2) + mr(m1, m2) }w
For m1 and m2,

Satisfaction
degree

mr

cd

0

1

1 1

1

1

1

(When w = 1)

cs: Stability
l Unary constraint for each variable
l Satisfaction degree decreases when the class to

which a responsibility belongs in the current
assignment is far from that in the given
assignment

13
μRc(k) = { 1 – cd(korig, k) }w For m,

csame
 / cdiff

 : Intention
l Binary constraint for each pair of variables
l Satisfaction degree decreases based on the

distance between the target classes

14

μRcsame(k1, k2) = { 1 – cd(k1, k2) }w

μRcdiff(k1, k2) = cd(k1, k2)w For m1 and m2,

15

Example: Constraints
ClassA
ClassB

ClassA
ClassB

ClassA
ClassB

roll()

setLocation() takeTurn()

16

Example: Constraints

•  Low Coupling
•  High Cohesion
•  (Intention)

ClassA
ClassB

setLocation() takeTurn()

ClassA
ClassB

ClassA
ClassB

roll()

17

ClassA
ClassB

setLocation() takeTurn()

ClassA
ClassB

ClassA
ClassB

roll()

Example: Constraints

•  Low Coupling
•  High Cohesion
•  Intention

Stability

Evaluation Questions
l  EQ 1:

How accurately does our technique assign responsibilities from
scratch?

l  EQ 2:
How accurately does our technique fix the assignment of
responsibilities if an initial assignment is given?

l  EQ 3:
Does our technique fix the assignment
when users’ intentions are given?

l  EQ 4:
Is the calculation of the assignment performed fast enough?

18

Summary of Evaluation
l  EQ 1:

How accurately does our technique
assign responsibilities from scratch?

l  EQ 2:
How accurately does our technique
fix the assignment of responsibilities
if an initial assignment is given?

l  EQ 3:
Does our technique fix the assignment
when users’ intentions are given?

l  EQ 4:
Is the calculation of the assignment
performed fast enough?

19

So-so.

Good.

Yes.

Yes.

Summary of Evaluation
l  EQ 1:

How accurately does our technique
assign responsibilities from scratch?

l  EQ 2
How accurately does our technique
fix the assignment of responsibilities
if an initial assignment is given?

l  EQ 3
Does our technique fix the assignment
when users’ intentions are given?

l  EQ 4
Is the calculation of the assignment
performed fast enough?

20

A certain level of precision.
Monopoly: 69%
NextGenPos: 33%

Good level of precision.
Monopoly: 58%
NextGenPos: 73%

Yes.
2 of 3 constraints hold.

Yes.
e.g., Fix: <1ms

Experimental Setup
l Example models from a CRA textbook

l Reverse engineering from source code
– Examples and oracles were extracted from textbook
– Class distance cd and Responsibility relevance mr

were measured based on the oracle

21

System # classes # responsibilities
Monopoly 6 26
NextGenPos 9 30

EQ 1 (from scratch)
l Prepared an empty model and assigned all the

responsibilities

22

Die()
roll()
getFaceValue()
MonopolyGame() [MonopolyGame]
Player() [Player]
takeTurn() [Player]
getLocation() [Player]

Piece()
getLocation()
setLocation()
getName() [Player]

Square() [Square]
getName() [Square]
getIndex() [Square]

Class 2 (Die)

playGame()
getPlayers()
playRound()

Class 3 (MonopolyGame) Board()
getSquare()
getStartSquare()
buildSquares()
build()
linkSquares()
link()

Class 1 (Board)

Class 5 (Player)

setNextSquare()
getNextSquare()

Class 6 (Square)
Class 4 (Piece)

How accurately does our technique assign responsibilities from scratch?

Class 2 (Die)

Class 3 (MonopolyGame)

Class 1 (Board)

Class 5 (Player)

Class 6 (Square)
Class 4 (Piece)

EQ 1 (from scratch)

23

Die()
roll()
getFaceValue()
MonopolyGame() [MonopolyGame]
Player() [Player]
takeTurn() [Player]
getLocation() [Player]

Class 2 (Die)

playGame()
getPlayers()
playRound()

Class 3 (MonopolyGame) Board()
getSquare()
getStartSquare()
buildSquares()
build()
linkSquares()
link()

Class 1 (Board)

Square() [Square]
getName() [Square]
getIndex() [Square]

Class 5 (Player)

setNextSquare()
getNextSquare()

Class 6 (Square)
Piece()
getLocation()
setLocation()
getName() [Player]

Class 4 (Piece)

Incorrect assignment [Oracle]

Monopoly: 69%

getRegister() [Store]

Class 8 (SaleLineItem)

becomeComplete()
isComplete()

Class 7 (Sale)
Payment()
getAmount()
makePayment() [Sale]

Class 3 (Payment)

Money()
add()
minus()
times()
getBalance() [Sale]
getTotal() [Sale]

Class 2 (Money)
getProductDescription() [ProductCatalog]
Register() [Register]
endSale() [Register]
enterItem() [Register]
makeNewSale() [Register]
makePayment() [Register]
makeLineItem() [Sale]

Class 5 (ProductDescription)

ItemID()
toString()
ProductCatalog() [ProductCatalog]

Class 1 (ItemID)
ProductDescription() [ProductDescription]
getItemID() [ProductDescription]
getPrice() [ProductDescription]
getDescription() [ProductDescription]

Class 4 (ProductCatalog)

SalesLineItem() [SalesLineItem]
getSubTotal() [SalesLineItem]

Class 9 (Store)

Sale() [Sale]

Class 6 (Register)

NextGenPos: 33%
How accurately does our technique assign responsibilities from scratch?

EQ 2 (w/ initial model)
l Detached each responsibility and re-assigned it

24

How accurately does our technique fix the assignment of responsibilities
if an initial assignment is given?

Die()
roll()
getFaceValue()

Piece()
getLocation()
setLocation()

Player()
takeTurn()
getLocation()
getName()

Class 2 (Die)

MonopolyGame()
playGame()
getPlayers()
playRound()

Class 3 (MonopolyGame)
Board()
getSquare()
getStartSquare()

build()
linkSquares()
link()

Class 1 (Board)

Class 5 (Player)

Square()
getName()
getIndex()
setNextSquare()
getNextSquare()

Class 6 (Square)
Class 4 (Piece)

? l Result
– Monopoly: 58%

(15 resp.)
– NextGenPos: 73%

(22 resp.)

EQ 3 (intention)
l Added 3 intention constraints in Monopoly

→ 2 of 3 were worked well

25

Does our technique fix the assignment when users’ intentions are given?

Users intention-based
constraints are feasible.

Die()
roll()
getFaceValue()
MonopolyGame() [MonopolyGame]
Player() [Player]
takeTurn() [Player]
getLocation() [Player]

Class 2 (Die)

playGame()
getPlayers()
playRound()

Class 3 (MonopolyGame) Board()
getSquare()
getStartSquare()
buildSquares()
build()
linkSquares()
link()

Class 1 (Board)

Square() [Square]
getName() [Square]
getIndex() [Square]

Class 5 (Player)

setNextSquare()
getNextSquare()

Class 6 (Square)
Piece()
getLocation()
setLocation()
getName() [Player]

Class 4 (Piece)

csame� csame�

cdiff �

EQ 4: Execution Time
l  Implementation

– Our FCSP library w/ fuzzy forward checking
–  on Java 7 (Window 7, Intel Core i7, 2.93GHz)

l Result
– Experiment for EQ 1 (≠ actual usage)

•  Monopoly: 20 ms
•  NextGenPos: 8550 ms

– Experiment for EQ 2
•  < 1 ms

– Experiment for EQ 3
•  20 ms

26

Yes, fast enough.

Is the calculation of the assignment performed fast enough?

Discussion/Conclusion

27

(Flexibility by formulating CRA as fuzzy CSP)

EQ 2:
improvement of
existing model

EQ 3:
Addition of
users intention

EQ 4:

Execution time

Might be feasible to develop
an interactive CASE tool for supporting CRA

Future Work
l Richer case studies for confirming scalability

– Applying our technique to real systems
l Use of other software metrics

– e.g., LCOM*
l Expressing other strategies as fuzzy constraints

– e.g., GRASP

28

Implementing CASE tool for designers

29

C
on
clu
sio
n

Class Responsibility
Assignment (CRA)

! Deciding a mapping A : M " K

2

MAX

Piece()

name

faceValue

Die()

roll()
getFaceValue()

location

getLocation()
setLocation()

Player()

board

getLocation()

piece
dice

takeTurn()

getName()

Knowing responsibilities:

Doing responsibilities:

Responsibilities (M) Classes (K)
A

ss
ig

nm
en

t
(A

)

Player

Die

Piece

Formulation
! Variable x
! Domain D
! Constraint c

8

roll()

setLocation() takeTurn()

c1

c2

x1

x2 x3

c4 ClassA
ClassB

c3

c6 c5

ClassA
ClassB

ClassA
ClassB

(3 responsibilities)

Responsibility m ∈ M
Set of classes K
Assignment strategy

Discussion

28
(Flexibility by formulating CRA as fuzzy CSP)

EQ 2:
improvement of
existing model

EQ 3:
Addition of
users intention

EQ 4:

Execution time

Might be feasible to develop
an interactive CASE tool for supporting CRA

Constraints
!  clc: Low Coupling
– relevant responsibilities are in distant classes

!  chc: High Cohesion
–  irrelevant responsibilities are in closer classes

!  cs: Stability
– responsibilities move from the initial assignment

!  csame, cdiff: Users Intention
– Distance between the specified responsibilities do

not follow

10

Credits
l Photo by teamaskins

– CRC Cards | Flickr
http://www.flickr.com/photos/teamaskins/130003950/

30

