Class Responsibility Assignment as **Fuzzy Constraint** Satisfaction parendo l.

<u>Shinpei Hayashi</u>[†], Takuto Yanagida[‡], Motoshi Saeki[†], and Hidetoshi Mimura[‡] [†]Tokyo Institute of Technology [‡]Shizuoka University

Class Responsibility Assignment (CRA)

• Deciding a mapping $A: M \rightarrow K$

Towards Quality CRA

• Example criterion: Low Coupling

Challenges for Automating CRA

- CRA is over-constrained
- Low Coupling: The distance between two classes Low Coupling: The distance between two of having related responsibilities should be shore
 High Cohesion: The relation between two responsibilities in close classes should be closed. having related responsibilities should be short.
 - responsibilities in close classes should be close.

A realistic solution needed, which satisfies constraints to some extent

Toward Interactive Tool

- Support of trial-and-error in design process
 - Stability:
 - "I want to improve my manually-assigned model. Do not DRASTICALLY modify it!"
 - Users Intention:
 - "I found that these two responsibilities should be assigned to the same class / different classes"

flexibly configurable technique needed

Our Approach

- Formulating CRA using Fuzzy Constraint
 Satisfaction Problem (FCSP)
 - Combinational search problem in AI field
 - Benefits
 - No need to define a monolithic evaluation function

-Each criterion is naturally represented as *fuzzy constraints*

• Usage of well-maintained solvers

FCSP

- Variable: $X = \{x_1, x_2, ..., x_n\}$
- Domain: $D = \{ D_1, D_2, ..., D_n \}$
- Constraint: $C = \{ c_1, c_2, ..., c_r \}$
 - inc. Unary and binary constraints
 - Each constraint has its satisfaction degree (μ R) [0, I]
- Objective:
 - Maximizing min μR

Formulation

- Variable $x \Box \leftarrow \text{Responsibility } m \in M$
- Domain $D \bigcirc \leftarrow$ Set of classes K
- Constraint c 🦯 \leftarrow Assignment strategy

Given Information

- Normalized two measures are used
 - Class Distance $cd: K^2 \rightarrow [0, 1]$ \rightarrow cd(k₁, k₂) When the distance between When $k_1 = k_2$ k_1 and k_2 is the farthest Responsibility Relevance $mr: M^2 \rightarrow [0, 1]$ $\rightarrow mr(m_1, m_2)$ When the relevance between When m_1 is no m_1 and m_2 is the highest relevance with m_2

Constraints

- c^{lc}: Low Coupling
 - relevant responsibilities are in distant classes
- c^{hc}: High Cohesion
 - irrelevant responsibilities are in closer classes
- c^s: Stability
 - responsibilities moved from the initial assignment
- c^{same}, c^{diff}: Users Intention

distance between the specified responsibilities does not follow

c^{lc}: Low Coupling

- Binary constraint for a pair of variables
- Satisfaction degree decreases when relevant responsibilities are in distant classes

chc: High Cohesion

- Binary constraint for a pair of variables
- Satisfaction degree decreases when irrelevant responsibilities are in closer classes

c^s: Stability

- Unary constraint for each variable
- Satisfaction degree decreases when the class to which a responsibility belongs in the current assignment is far from that in the given assignment

c^{same} / c^{diff} : Intention

- Binary constraint for each pair of variables
- Satisfaction degree decreases based on the distance between the target classes

For m_1 and m_2 ,

$$\mathcal{L}R_{c^{\text{same}}}(k_{1}, k_{2}) = \{ 1 - cd(k_{1}, k_{2}) \}^{w}$$

$$\mathcal{L}R_{c^{\text{diff}}}(k_{1}, k_{2}) = cd(k_{1}, k_{2})^{w}$$

Example: Constraints

Example: Constraints

Example: Constraints

Evaluation Questions

• EQ I:

How accurately does our technique assign responsibilities from scratch?

• EQ 2:

How accurately does our technique fix the assignment of responsibilities if an initial assignment is given?

• EQ 3:

Does our technique fix the assignment when users' intentions are given?

• EQ 4:

Is the calculation of the assignment performed fast enough?

Summary of Evaluation

• EQ I:

How accurately does our technique assign responsibilities from scratch?

• EQ 2:

How accurately does our technique fix the assignment of responsibilities if an initial assignment is given?

• EQ 3:

Does our technique fix the assignment when users' intentions are given?

• EQ 4:

Is the calculation of the assignment performed fast enough?

Summary of Evaluation

• EQ I:

How accurately does our technique assign responsibilities from scratch?

• EQ 2

How accurately does our technique fix the assignment of responsibilities if an initial assignment is given?

• EQ 3

Does our technique fix the assignment when users' intentions are given?

• EQ 4

Is the calculation of the assignment performed fast enough?

A certain level of precision. Monopoly: 69% NextGenPos: 33%

Good level of precision. Monopoly: 58% NextGenPos: 73%

Yes.

2 of 3 constraints hold.

Yes. e.g., Fix: < I ms

Experimental Setup

• Example models from a CRA textbook

System	# classes	# responsibilities
Monopoly	6	26
NextGenPos	9	30

- Reverse engineering from source code
 - Examples and oracles were extracted from textbook
 - Class distance *cd* and Responsibility relevance *mr* were measured based on the oracle

EQ I (from scratch)

How accurately does our technique assign responsibilities from scratch?

Prepared an empty model and assigned all the responsibilities

EQ I (from scratch)

How accurately does our technique assign responsibilities from scratch?

Monopoly: 69%

NextGenPos: 33%

Incorrect assignment [Oracle]

EQ 2 (w/ initial model)

How accurately does our technique fix the assignment of responsibilities if an initial assignment is given?

• Detached each responsibility and re-assigned it

• Result

- Monopoly: 58%(15 resp.)
- NextGenPos: 73%(22 resp.)

EQ 3 (intention)

Does our technique fix the assignment when users' intentions are given?

• Added 3 intention constraints in Monopoly

 \rightarrow 2 of 3 were worked well

Users intention-based constraints are feasible.

EQ 4: Execution Time

Is the calculation of the assignment performed fast enough?

• Implementation

- Our FCSP library w/ fuzzy forward checking
- on Java 7 (Window 7, Intel Core i7, 2.93GHz)

• Result

- Experiment for EQ I (≠ actual usage)
 - Monopoly: 20 ms
 - NextGenPos: 8550 ms
- Experiment for EQ 2
 - < | ms

– Experiment for EQ 3

• 20 ms

Yes, fast enough.

Discussion/Conclusion

improvement of existing model

EO 2:

EQ 3:

Addition of

users intention

Might be feasible to develop an **interactive CASE tool** for supporting CRA

(Flexibility by formulating CRA as fuzzy CSP)

Future Work

- Richer case studies for confirming scalability
 - Applying our technique to real systems
- Use of other software metrics
 - e.g., LCOM*
- Expressing other strategies as fuzzy constraints – e.g., GRASP

Class Responsibility Assignment (CRA)

• Deciding a mapping $A: M \rightarrow K$

Constraints

- c^{lc}: Low Coupling
 - celevant responsibilities are in distant classes
- *c^{hc}*: High Cohesion
 - irrelevant responsibilities are in closer classes
- *c*^s: Stability

• c^{same}, c^{diff}: Users Intention

Distance between the specified responsibilities do not follow

10

Formulation

- Variable $x \Box \leftarrow \text{Responsibility } m \in M$
- Domain $D \subseteq \leftarrow$ Set of classes K
- Constraint $c \nearrow \leftarrow$ Assignment strategy

Discussion

Might be feasible to develop an **interactive CASE tool** for supporting CRA

(Flexibility by formulating CRA as fuzzy CSP)

Credits

- Photo by teamaskins
 - CRC Cards | Flickr

http://www.flickr.com/photos/teamaskins/130003950/