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Class Responsibility 
Assignment (CRA) 

l Deciding a mapping A : M à K 
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Knowing responsibilities: 

Doing responsibilities: 
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Towards Quality CRA 
l Example criterion: Low Coupling 
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Challenges for 
Automating CRA 

l CRA is over-constrained 
– Low Coupling:  The distance between two classes 

having related responsibilities should be short. 
– High Cohesion:  The relation between two 

responsibilities in close classes should be close. 
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A realistic solution needed,  
which satisfies constraints to some extent  



Toward Interactive Tool 
l Support of trial-and-error in design process 

– Stability:  
•  "I want to improve my manually-assigned model. 

 Do not DRASTICALLY modify it!" 
– Users Intention: 

•  "I found that these two responsibilities should be 
assigned to the same class / different classes" 
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flexibly configurable technique needed 



Our Approach 
l Formulating CRA using Fuzzy Constraint 

Satisfaction Problem (FCSP) 
– Combinational search problem in AI field 
– Benefits 

• No need to define a monolithic evaluation 
function 

– Each criterion is naturally represented 
as fuzzy constraints 

• Usage of well-maintained solvers 
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FCSP 
l Variable: X = { x1, x2, ..., xn } 
l Domain: D = { D1, D2, ..., Dn } 
l Constraint: C = { c1, c2, ..., cr } 

–  inc. Unary and binary constraints 
– Each constraint has 

its satisfaction degree (μR) [0, 1] 

l Objective: 
– Maximizing  min μR 
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Formulation 
l Variable       x 
l Domain       D 
l Constraint   c 
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roll() 

setLocation() takeTurn() 

c1 

c2 

x1 

x2 x3 

c4 ClassA 
ClassB 

c3 

c6 c5 

ClassA 
ClassB 

ClassA 
ClassB 

(3 responsibilities) 

ß Responsibility m ∈ M 
ß Set of classes K 
ß Assignment strategy 



Given Information 
l Normalized two measures are used 

–   Class Distance cd : K2 à [0, 1] 

–   Responsibility Relevance mr : M2 → [0, 1] 
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0 1 

When k1 = k2 

cd(k1, k2) 
When the distance between 
k1 and k2 is the farthest 

0 1 

When m1 is no 
relevance with m2 

mr(m1, m2) 

When the relevance between 
m1 and m2 is the highest 



Constraints 
l  clc: Low Coupling 

– relevant responsibilities are in distant classes 

l  chc: High Cohesion 
–  irrelevant responsibilities are in closer classes 

l  cs: Stability 
– responsibilities moved from the initial assignment 

l  csame, cdiff: Users Intention 
– distance between the specified responsibilities does 

not follow  
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clc: Low Coupling 
l  Binary constraint for a pair of variables 
l  Satisfaction degree decreases when 

relevant responsibilities are in distant classes 
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cd 

1 

1 

Satisfaction 
degree 

0 

1 

1 1 

mr 

μRc(k1, k2) = { –mr(m1, m2)cd(k1, k2) + 1 }w 
For m1 and m2,  

(When w = 1) 



chc: High Cohesion 
l  Binary constraint for a pair of variables 
l  Satisfaction degree decreases when 

irrelevant responsibilities are in closer classes 
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μRc(k1, k2) = { (1 – mr(m1, m2))cd(k1, k2) + mr(m1, m2) }w 
For m1 and m2,  
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cs: Stability 
l Unary constraint for each variable 
l Satisfaction degree decreases when the class to 

which a responsibility belongs in the current 
assignment is far from that in the given 
assignment 
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μRc(k) = { 1 – cd(korig, k) }w For m,  



csame
 / cdiff

 : Intention 
l Binary constraint for each pair of variables 
l Satisfaction degree decreases based on the 

distance between the target classes 
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μRcsame(k1, k2) = { 1 – cd(k1, k2) }w 

μRcdiff(k1, k2) = cd(k1, k2)w For m1 and m2,  
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Example: Constraints 
ClassA 
ClassB 

ClassA 
ClassB 

ClassA 
ClassB 

roll() 

setLocation() takeTurn() 
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Example: Constraints 

•  Low Coupling 
•  High Cohesion 
•  (Intention) 

ClassA 
ClassB 

setLocation() takeTurn() 

ClassA 
ClassB 

ClassA 
ClassB 

roll() 
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ClassA 
ClassB 

setLocation() takeTurn() 

ClassA 
ClassB 

ClassA 
ClassB 

roll() 

Example: Constraints 

•  Low Coupling 
•  High Cohesion 
•  Intention 

Stability 



Evaluation Questions 
l  EQ 1: 

How accurately does our technique assign responsibilities from 
scratch? 

l  EQ 2: 
How accurately does our technique fix the assignment of 
responsibilities if an initial assignment is given? 

l  EQ 3: 
Does our technique fix the assignment  
when users’ intentions are given? 

l  EQ 4: 
Is the calculation of the assignment performed fast enough? 
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Summary of Evaluation 
l  EQ 1: 

How accurately does our technique 
assign responsibilities from scratch? 

l  EQ 2: 
How accurately does our technique 
fix the assignment of responsibilities 
if an initial assignment is given? 

l  EQ 3: 
Does our technique fix the assignment  
when users’ intentions are given? 

l  EQ 4: 
Is the calculation of the assignment 
performed fast enough? 
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So-so. 

Good. 

Yes. 

Yes. 



Summary of Evaluation 
l  EQ 1: 

How accurately does our technique 
assign responsibilities from scratch? 

l  EQ 2 
How accurately does our technique 
fix the assignment of responsibilities 
if an initial assignment is given? 

l  EQ 3 
Does our technique fix the assignment  
when users’ intentions are given? 

l  EQ 4 
Is the calculation of the assignment 
performed fast enough? 
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A certain level of precision. 
Monopoly: 69% 
NextGenPos: 33% 

Good level of precision. 
Monopoly: 58% 
NextGenPos: 73% 

Yes. 
2 of 3 constraints hold. 

Yes. 
e.g., Fix: <1ms 



Experimental Setup 
l Example models from a CRA textbook 

l Reverse engineering from source code 
– Examples and oracles were extracted from textbook 
– Class distance cd and Responsibility relevance mr 

were measured based on the oracle 
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System # classes # responsibilities 
Monopoly 6 26 
NextGenPos 9 30 



EQ 1 (from scratch) 
l Prepared an empty model and assigned all the 

responsibilities 
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Die() 
roll() 
getFaceValue() 
MonopolyGame() [MonopolyGame] 
Player() [Player] 
takeTurn() [Player] 
getLocation() [Player] 

Piece() 
getLocation() 
setLocation() 
getName() [Player] 

Square() [Square] 
getName() [Square] 
getIndex() [Square] 

Class 2 (Die) 

playGame() 
getPlayers() 
playRound() 

Class 3 (MonopolyGame) Board() 
getSquare() 
getStartSquare() 
buildSquares() 
build() 
linkSquares() 
link() 

Class 1 (Board) 

Class 5 (Player) 

setNextSquare() 
getNextSquare() 

Class 6 (Square) 
Class 4 (Piece) 

How accurately does our technique assign responsibilities from scratch? 

Class 2 (Die) 

Class 3 (MonopolyGame) 

Class 1 (Board) 

Class 5 (Player) 

Class 6 (Square) 
Class 4 (Piece) 



EQ 1 (from scratch) 
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Die() 
roll() 
getFaceValue() 
MonopolyGame() [MonopolyGame] 
Player() [Player] 
takeTurn() [Player] 
getLocation() [Player] 

Class 2 (Die) 

playGame() 
getPlayers() 
playRound() 

Class 3 (MonopolyGame) Board() 
getSquare() 
getStartSquare() 
buildSquares() 
build() 
linkSquares() 
link() 

Class 1 (Board) 

Square() [Square] 
getName() [Square] 
getIndex() [Square] 

Class 5 (Player) 

setNextSquare() 
getNextSquare() 

Class 6 (Square) 
Piece() 
getLocation() 
setLocation() 
getName() [Player] 

Class 4 (Piece) 

Incorrect assignment [Oracle] 

Monopoly: 69% 

getRegister() [Store] 

Class 8 (SaleLineItem) 

becomeComplete() 
isComplete() 

Class 7 (Sale) 
Payment() 
getAmount() 
makePayment() [Sale] 

Class 3 (Payment) 

Money() 
add() 
minus() 
times() 
getBalance() [Sale] 
getTotal() [Sale] 

Class 2 (Money) 
getProductDescription() [ProductCatalog] 
Register() [Register] 
endSale() [Register] 
enterItem() [Register] 
makeNewSale() [Register] 
makePayment() [Register] 
makeLineItem() [Sale] 

Class 5 (ProductDescription) 

ItemID() 
toString() 
ProductCatalog() [ProductCatalog] 

Class 1 (ItemID) 
ProductDescription() [ProductDescription] 
getItemID() [ProductDescription] 
getPrice() [ProductDescription] 
getDescription() [ProductDescription] 

Class 4 (ProductCatalog) 

SalesLineItem() [SalesLineItem] 
getSubTotal() [SalesLineItem] 

Class 9 (Store) 

Sale() [Sale] 

Class 6 (Register) 

NextGenPos: 33% 
How accurately does our technique assign responsibilities from scratch? 



EQ 2 (w/ initial model) 
l Detached each responsibility and re-assigned it 

24 

How accurately does our technique fix the assignment of responsibilities 
if an initial assignment is given? 

Die() 
roll() 
getFaceValue() 

Piece() 
getLocation() 
setLocation() 

Player() 
takeTurn() 
getLocation() 
getName() 

Class 2 (Die) 

MonopolyGame() 
playGame() 
getPlayers() 
playRound() 

Class 3 (MonopolyGame) 
Board() 
getSquare() 
getStartSquare() 
 
build() 
linkSquares() 
link() 

Class 1 (Board) 

Class 5 (Player) 

Square() 
getName() 
getIndex() 
setNextSquare() 
getNextSquare() 

Class 6 (Square) 
Class 4 (Piece) 

? l Result 
– Monopoly: 58% 

(15 resp.) 
– NextGenPos: 73% 

(22 resp.) 



EQ 3 (intention) 
l Added 3 intention constraints in Monopoly 

→ 2 of 3 were worked well 
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Does our technique fix the assignment when users’ intentions are given? 

Users intention-based 
constraints are feasible. 

Die() 
roll() 
getFaceValue() 
MonopolyGame() [MonopolyGame] 
Player() [Player] 
takeTurn() [Player] 
getLocation() [Player] 

Class 2 (Die) 

playGame() 
getPlayers() 
playRound() 

Class 3 (MonopolyGame) Board() 
getSquare() 
getStartSquare() 
buildSquares() 
build() 
linkSquares() 
link() 

Class 1 (Board) 

Square() [Square] 
getName() [Square] 
getIndex() [Square] 

Class 5 (Player) 

setNextSquare() 
getNextSquare() 

Class 6 (Square) 
Piece() 
getLocation() 
setLocation() 
getName() [Player] 

Class 4 (Piece) 

csame� csame�

cdiff �



EQ 4: Execution Time 
l  Implementation 

– Our FCSP library w/ fuzzy forward checking 
–  on Java 7 (Window 7, Intel Core i7, 2.93GHz) 

l Result 
– Experiment for EQ 1 (≠ actual usage) 

•  Monopoly: 20 ms 
•  NextGenPos: 8550 ms 

– Experiment for EQ 2 
•  < 1 ms 

– Experiment for EQ 3 
•  20 ms 
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Yes, fast enough. 

Is the calculation of the assignment performed fast enough? 



Discussion/Conclusion 
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(Flexibility by formulating CRA as fuzzy CSP) 

EQ 2: 
improvement of 
existing model 

EQ 3: 
Addition of 
users intention 

EQ 4: 
 
Execution time 

Might be feasible to develop 
an interactive CASE tool for supporting CRA 



Future Work 
l Richer case studies for confirming scalability 

– Applying our technique to real systems 
l Use of other software metrics 

– e.g., LCOM* 
l Expressing other strategies as fuzzy constraints 

– e.g., GRASP 
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Implementing CASE tool for designers 
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Class Responsibility 
Assignment (CRA) 

! Deciding a mapping A : M " K 
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getName() 

Knowing responsibilities: 

Doing responsibilities: 

Responsibilities (M) Classes (K) 
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Formulation 
! Variable       x 
! Domain       D 
! Constraint   c 
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roll() 

setLocation() takeTurn() 

c1 

c2 

x1 

x2 x3 

c4 ClassA 
ClassB 

c3 

c6 c5 

ClassA 
ClassB 

ClassA 
ClassB 

(3 responsibilities) 

# Responsibility m ∈ M 
# Set of classes K 
# Assignment strategy 

Discussion 
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(Flexibility by formulating CRA as fuzzy CSP) 

EQ 2: 
improvement of 
existing model 

EQ 3: 
Addition of 
users intention 

EQ 4: 
 
Execution time 

Might be feasible to develop 
an interactive CASE tool for supporting CRA 

Constraints 
!  clc: Low Coupling 
– relevant responsibilities are in distant classes 

!  chc: High Cohesion 
–  irrelevant responsibilities are in closer classes 

!  cs: Stability 
– responsibilities move from the initial assignment 

!  csame, cdiff: Users Intention 
– Distance between the specified responsibilities do 

not follow  
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